Author: Kumari, Sushma; Chatterjee, Kaushik
Title: Biomaterials-based formulations and surfaces to combat viral infectious diseases Cord-id: c7l1jx3t Document date: 2021_2_9
ID: c7l1jx3t
Snippet: Rapidly growing viral infections are potent risks to public health worldwide. Accessible virus-specific antiviral vaccines and drugs are therapeutically inert to emerging viruses, such as Zika, Ebola, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, discovering ways to prevent and control viral infections is among the foremost medical challenge of our time. Recently, innovative technologies are emerging that involve the development of new biomaterial-based formulation
Document: Rapidly growing viral infections are potent risks to public health worldwide. Accessible virus-specific antiviral vaccines and drugs are therapeutically inert to emerging viruses, such as Zika, Ebola, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, discovering ways to prevent and control viral infections is among the foremost medical challenge of our time. Recently, innovative technologies are emerging that involve the development of new biomaterial-based formulations and surfaces endowed with broad-spectrum antiviral properties. Here, we review emerging biomaterials technologies for controlling viral infections. Relevant advances in biomaterials employed with nanotechnology to inactivate viruses or to inhibit virus replication and further their translation in safe and effective antiviral formulations in clinical trials are discussed. We have included antiviral approaches based on both organic and inorganic nanoparticles (NPs), which offer many advantages over molecular medicine. An insight into the development of immunomodulatory scaffolds in designing new platforms for personalized vaccines is also considered. Substantial research on natural products and herbal medicines and their potential in novel antiviral drugs are discussed. Furthermore, to control contagious viral infections, i.e., to reduce the viral load on surfaces, current strategies focusing on biomimetic anti-adhesive surfaces through nanostructured topography and hydrophobic surface modification techniques are introduced. Biomaterial surfaces functionalized with antimicrobial polymers and nanoparticles against viral infections are also discussed. We recognize the importance of research on antiviral biomaterials and present potential strategies for future directions in applying these biomaterial-based approaches to control viral infections and SARS-CoV-2.
Search related documents:
Co phrase search for related documents- action mechanism and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- action mechanism and additional control: 1
- action mechanism and adenovirus type: 1, 2, 3, 4, 5
- active remain and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7
- active sustained and acute respiratory syndrome: 1
- acute ards respiratory distress syndrome and additional control: 1
- acute ards respiratory distress syndrome and additional work: 1
- acute ards respiratory distress syndrome and adenovirus type: 1, 2, 3
- acute respiratory syndrome and additional control: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- acute respiratory syndrome and additional work: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- acute respiratory syndrome and adenovirus type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date