Author: Yoshino, Ryunosuke; Yasuo, Nobuaki; Sekijima, Masakazu
Title: Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates Cord-id: dvy2fo48 Document date: 2020_7_27
ID: dvy2fo48
Snippet: The number of cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19) has reached over 114,000. SARS-CoV-2 caused a pandemic in Wuhan, China, in December 2019 and is rapidly spreading globally. It has been reported that peptide-like anti-HIV-1 drugs are effective against SARS-CoV Main protease (M(pro)). Due to the close phylogenetic relationship between SARS-CoV and SARS-CoV-2, their main proteases share many structural and functional features. Thus, these drug
Document: The number of cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19) has reached over 114,000. SARS-CoV-2 caused a pandemic in Wuhan, China, in December 2019 and is rapidly spreading globally. It has been reported that peptide-like anti-HIV-1 drugs are effective against SARS-CoV Main protease (M(pro)). Due to the close phylogenetic relationship between SARS-CoV and SARS-CoV-2, their main proteases share many structural and functional features. Thus, these drugs are also regarded as potential drug candidates targeting SARS-CoV-2 M(pro). However, the mechanism of action of SARS-CoV-2 M(pro) at the atomic-level is unknown. In the present study, we revealed key interactions between SARS-CoV-2 M(pro) and three drug candidates by performing pharmacophore modeling and 1 μs molecular dynamics (MD) simulations. His41, Gly143, and Glu166 formed interactions with the functional groups that were common among peptide-like inhibitors in all MD simulations. These interactions are important targets for potential drugs against SARS-CoV-2 M(pro).
Search related documents:
Co phrase search for related documents- active ligand and acute sars cov respiratory syndrome cov: 1
Co phrase search for related documents, hyperlinks ordered by date