Author: Walters, Caroline E.; Meslé, Margaux M.I.; Hall, Ian M.
Title: Modelling the global spread of diseases: A review of current practice and capability Cord-id: cbl9xds3 Document date: 2018_12_25
ID: cbl9xds3
Snippet: Mathematical models can aid in the understanding of the risks associated with the global spread of infectious diseases. To assess the current state of mathematical models for the global spread of infectious diseases, we reviewed the literature highlighting common approaches and good practice, and identifying research gaps. We followed a scoping study method and extracted information from 78 records on: modelling approaches; input data (epidemiological, population, and travel) for model parameter
Document: Mathematical models can aid in the understanding of the risks associated with the global spread of infectious diseases. To assess the current state of mathematical models for the global spread of infectious diseases, we reviewed the literature highlighting common approaches and good practice, and identifying research gaps. We followed a scoping study method and extracted information from 78 records on: modelling approaches; input data (epidemiological, population, and travel) for model parameterization; model validation data. We found that most epidemiological data come from published journal articles, population data come from a wide range of sources, and travel data mainly come from statistics or surveys, or commercial datasets. The use of commercial datasets may benefit the modeller, however makes critical appraisal of their model by other researchers more difficult. We found a minority of records (26) validated their model. We posit that this may be a result of pandemics, or far-reaching epidemics, being relatively rare events compared with other modelled physical phenomena (e.g. climate change). The sparsity of such events, and changes in outbreak recording, may make identifying suitable validation data difficult. We appreciate the challenge of modelling emerging infections given the lack of data for both model parameterisation and validation, and inherent complexity of the approaches used. However, we believe that open access datasets should be used wherever possible to aid model reproducibility and transparency. Further, modellers should validate their models where possible, or explicitly state why validation was not possible.
Search related documents:
Co phrase search for related documents- abstract screening and acute respiratory syndrome: 1, 2, 3, 4, 5
- abstract screening and long period: 1
- abstract screening title and accurate assessment: 1
- abstract screening title and acute respiratory syndrome: 1, 2, 3, 4
- abstract title and accurate assessment: 1
- abstract title and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
- abstract title and long distance: 1
- abstract title screen and acute respiratory syndrome: 1, 2
- accuracy complexity and acute respiratory syndrome: 1
- accurate assessment and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- acute respiratory syndrome and long distance: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- acute respiratory syndrome and long distance travel: 1
- acute respiratory syndrome and long period: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53
Co phrase search for related documents, hyperlinks ordered by date