Author: Das, A.; Weaver, L.; Saffaran, S.; Yehya, N.; Scott, T. E.; Chikhani, M.; Laffey, J. G.; Hardman, J. G.; Camporota, L.; Bates, D.
Title: High risk of patient self-inflicted lung injury in COVID-19 with frequently encountered spontaneous breathing patterns: a computational modelling study Cord-id: elq0fkdq Document date: 2021_3_17
ID: elq0fkdq
Snippet: There is ongoing controversy regarding the potential for increased respiratory effort to generate patient self-inflicted lung injury (P-SILI) in spontaneously breathing patients with COVID-19 acute respiratory failure. However, direct clinical evidence linking increased inspiratory effort to lung injury is scarce. We adapted a recently developed computational simulator that replicates distinctive features of COVID-19 pathophysiology to quantify the mechanical forces that could lead to P-SILI at
Document: There is ongoing controversy regarding the potential for increased respiratory effort to generate patient self-inflicted lung injury (P-SILI) in spontaneously breathing patients with COVID-19 acute respiratory failure. However, direct clinical evidence linking increased inspiratory effort to lung injury is scarce. We adapted a recently developed computational simulator that replicates distinctive features of COVID-19 pathophysiology to quantify the mechanical forces that could lead to P-SILI at different levels of respiratory effort. In accordance with recent data, the simulator was calibrated to represent a spontaneously breathing COVID-19 patient with severe hypoxaemia (SaO2 80.6%) and relatively well-preserved lung mechanics (lung compliance of 47.5 ml/cmH2O), being treated with supplemental oxygen (FiO2 = 100%). Simulations were conducted at tidal volumes (VT) and respiratory rates (RR) of 7 ml/kg and 14 breaths/min (representing normal respiratory effort) and at VT/RR of 15/14, 7/20, 15/20, 10/30, 12/30, 10/35, 12/35, 10/40, 12/40 ml/kg / breaths/min. Lung compliance was unaffected by increased VT but decreased significantly at higher RR. While oxygenation improved, significant increases in multiple indicators of the potential for lung injury were observed at all higher VT/RR combinations tested. Pleural pressure swing increased from 10.1 cmH2O at baseline to 30 cmH2O at VT/RR of 15 ml/kg / 20 breaths/min and to 54.6 cmH2O at 12 ml/kg / 40 breaths/min. Dynamic strain increased from 0.3 to 0.49 at VT/RR of 12 ml/kg / 30 breaths/min, and to 0.6 at 15 ml/kg / 20 breaths/min. Mechanical power increased from 7.83 J/min to 17.7 J/min at VT/RR of 7 ml/kg / 20 breaths/min, and to 240.5 7 J/min at 12 ml/kg / 40 breaths/min. Our results suggest that the forces generated during increased inspiratory effort in severe COVID-19 are compatible with the development of P-SILI. If conventional oxygen therapy or non-invasive ventilation is ineffective in reducing respiratory effort, control of driving and transpulmonary pressures with invasive ventilation may reduce the risk of P-SILI and allow time for the resolution of the underlying condition.
Search related documents:
Co phrase search for related documents- acute lung injury and additional evidence: 1
- acute lung injury and additional risk: 1
- acute lung injury and admission cxr: 1
- acute lung injury and lung compliance: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- acute lung injury and lung condition: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- acute lung injury and lung damage: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute lung injury and lung damage cause: 1, 2, 3
- acute lung injury and lung edema: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute lung injury and lung elastance: 1, 2, 3, 4, 5
- acute lung injury and lung gas volume: 1, 2
- acute lung injury and lung heterogeneity: 1, 2, 3
- acute lung injury and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory failure and additional risk: 1, 2, 3, 4, 5, 6, 7
- acute respiratory failure and lung damage: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- acute respiratory failure and lung damage cause: 1
- acute respiratory failure and lung edema: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- acute respiratory failure and lung elastance: 1, 2
- acute respiratory failure and lung heterogeneity: 1, 2
- acute respiratory failure and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date