Author: Daon, Yair; Thompson, Robin N; Obolski, Uri
Title: Estimating COVID-19 outbreak risk through air travel Cord-id: rsfomj5g Document date: 2020_4_20
ID: rsfomj5g
Snippet: Background: COVID-19 has spread rapidly across the globe during the first several months of 2020, creating a pandemic. Substantial, non-discriminatory limitations have been imposed on air travel to inhibit this spread. As the disease prevalence and incidence will decrease, more specific control measures will be sought so that commercial air travel can continue to operate yet not impose a high threat of COVID-19 resurgence. Methods: We use modelled global air travel data and population density es
Document: Background: COVID-19 has spread rapidly across the globe during the first several months of 2020, creating a pandemic. Substantial, non-discriminatory limitations have been imposed on air travel to inhibit this spread. As the disease prevalence and incidence will decrease, more specific control measures will be sought so that commercial air travel can continue to operate yet not impose a high threat of COVID-19 resurgence. Methods: We use modelled global air travel data and population density estimates to analyse the risk posed by 1364 airports to initiate a COVID-19 outbreak. We calculate the risk using a probabilistic approach that considers the volume of air travelers between airports and the R0 of each location, scaled by population density. This exercise is performed globally as well as specifically for two potentially vulnerable locations: Africa and India. Results: We show that globally, many of the airports posing the highest risk are in China and India. An outbreak of COVID-19 in Africa is most likely to originate in a passenger travelling from Europe. On the other hand, the highest risk to India is from domestic travellers. Our results are robust to changes in the underlying epidemiological assumptions. Conclusions: Variation in flight volumes and destinations creates a non-uniform distribution of the risk different airports pose to resurgence of a COVID-19 outbreak. We suggest the method presented here as a tool for the estimation of this risk. Our method can be used to inform efficient allocation of resources, such as tests identifying infected passengers, so that they could be differentially deployed in various locations.
Search related documents:
Co phrase search for related documents- additional resource and low income: 1, 2, 3, 4
- local density and low number: 1
- local scale and low income: 1, 2
Co phrase search for related documents, hyperlinks ordered by date