Author: Uckun, Fatih M.; Tuzcu, Mehmet; Gitterle, Marcus; Volk, Michael; Sahin, Kazim
Title: Rejuveinix Mitigates Sepsis-Associated Oxidative Stress in the Brain of Mice: Clinical Impact Potential in COVID-19 and Nervous System Disorders Cord-id: m495uxt4 Document date: 2021_1_5
ID: m495uxt4
Snippet: Here, we demonstrate that our anti-sepsis and COVID-19 drug candidate Rejuveinix (RJX) substantially improves the survival outcome in the LPS-GalN animal model of sepsis and multi-organ failure. One hundred (100) percent (%) of untreated control mice remained alive throughout the experiment. By comparison, 100% of LPS-GalN injected mice died at a median of 4.6 hours. In contrast to the invariably fatal treatment outcome of vehicle-treated control mice, 40% of mice treated with RJX (n=25) remaine
Document: Here, we demonstrate that our anti-sepsis and COVID-19 drug candidate Rejuveinix (RJX) substantially improves the survival outcome in the LPS-GalN animal model of sepsis and multi-organ failure. One hundred (100) percent (%) of untreated control mice remained alive throughout the experiment. By comparison, 100% of LPS-GalN injected mice died at a median of 4.6 hours. In contrast to the invariably fatal treatment outcome of vehicle-treated control mice, 40% of mice treated with RJX (n=25) remained alive with a 2.4-fold longer median time survival time of 10.9 hours (Log-rank X2=20.60, P<0.0001). Notably, RJX increased the tissue levels of antioxidant enzymes SOD, CAT, and GSH-Px, and reduced oxidative stress in the brain. These findings demonstrate the clinical impact potential of RJX as a neuroprotective COVID-19 and sepsis drug candidate.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date