Author: Littauer, Elizabeth Q.; Skountzou, Ioanna
Title: Hormonal Regulation of Physiology, Innate Immunity and Antibody Response to H1N1 Influenza Virus Infection During Pregnancy Cord-id: sqv864q7 Document date: 2018_10_29
ID: sqv864q7
Snippet: In 2009, the H1N1 swine flu pandemic highlighted the vulnerability of pregnant women to influenza viral infection. Pregnant women infected with influenza A virus were at increased risk of hospitalization and severe acute respiratory distress syndrome (ARDS), which is associated with high mortality, while their newborns had an increased risk of pre-term birth or low birth weight. Pregnant women have a unique immunological profile modulated by the sex hormones required to maintain pregnancy, namel
Document: In 2009, the H1N1 swine flu pandemic highlighted the vulnerability of pregnant women to influenza viral infection. Pregnant women infected with influenza A virus were at increased risk of hospitalization and severe acute respiratory distress syndrome (ARDS), which is associated with high mortality, while their newborns had an increased risk of pre-term birth or low birth weight. Pregnant women have a unique immunological profile modulated by the sex hormones required to maintain pregnancy, namely progesterone and estrogens. The role of these hormones in coordinating maternal immunotolerance in uterine tissue and cellular subsets has been well researched; however, these hormones have wide-ranging effects outside the uterus in modulating the immune response to disease. In this review, we compile research findings in the clinic and in animal models that elaborate on the unique features of H1N1 influenza A viral pathogenesis during pregnancy, the crosstalk between innate immune signaling and hormonal regulation during pregnancy, and the role of pregnancy hormones in modulating cellular responses to influenza A viral infection at mid-gestation. We highlight the ways in which lung architecture and function is stressed by pregnancy, increasing baseline inflammation prior to infection. We demonstrate that infection disrupts progesterone production and upregulates inflammatory mediators, such as cyclooxygenase-2 (COX-2) and prostaglandins, resulting in pre-term labor and spontaneous abortions. Lastly, we profile the ways in which pregnancy alters innate and adaptive cellular immune responses to H1N1 influenza viral infection, and the ways in which these protect fetal development at the expense of effective long-term immune memory. Thus, we highlight advancements in the field of reproductive immunology in response to viral infection and illustrate how that knowledge might be used to develop more effective post-infection therapies and vaccination strategies.
Search related documents:
Co phrase search for related documents- acute ards respiratory distress syndrome and local chemoattractant: 1
- acute ards respiratory distress syndrome and low concentration: 1
- acute ards respiratory distress syndrome and low respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
- acute ards respiratory distress syndrome and low respiratory tract: 1, 2
- acute ards respiratory distress syndrome and lung architecture: 1
- acute ards respiratory distress syndrome and lung capacity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- acute ards respiratory distress syndrome and lung epithelial cell regeneration: 1
- acute ards respiratory distress syndrome and lung expression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
- acute ards respiratory distress syndrome and lung function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66
- acute ards respiratory distress syndrome and lung function enhance: 1, 2
- acute ards respiratory distress syndrome and lung immunopathology: 1, 2, 3
- acute ards respiratory distress syndrome and lung inflammation: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute ards respiratory distress syndrome and lung physiology: 1, 2, 3, 4, 5, 6, 7
- acute ards respiratory distress syndrome and lung tidal volume: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- acute ards respiratory distress syndrome and lung traffic: 1
- acute ards respiratory distress syndrome and lupus erythematosus: 1, 2, 3, 4, 5, 6, 7
- acute ards respiratory distress syndrome and lymph node: 1, 2
- acute ards respiratory distress syndrome and lymphoid tissue: 1, 2, 3, 4
- acute ards respiratory distress syndrome and macrophage viability: 1
Co phrase search for related documents, hyperlinks ordered by date