Author: RodrÃguez, Cristina; Luque, Neus; Blanco, Isabel; Sebastian, Laura; Barberà , Joan Albert; Peinado, VÃctor I.; Tura-Ceide, Olga
Title: Pulmonary Endothelial Dysfunction and Thrombotic Complications in Patients with COVID-19 Cord-id: fe6928wf Document date: 2021_4_25
ID: fe6928wf
Snippet: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new strain of a Coronaviridae virus that presents 79% genetic similarity to the severe acute respiratory syndrome coronavirus, has been recently recognized as the cause of a global pandemic by the World Health Organization, implying a major threat to world public health. SARS-CoV-2 infects host human cells by binding through the viral spike proteins to the ACE-2 (angiotensin-converting enzyme 2) receptor, fuses with the cell membran
Document: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new strain of a Coronaviridae virus that presents 79% genetic similarity to the severe acute respiratory syndrome coronavirus, has been recently recognized as the cause of a global pandemic by the World Health Organization, implying a major threat to world public health. SARS-CoV-2 infects host human cells by binding through the viral spike proteins to the ACE-2 (angiotensin-converting enzyme 2) receptor, fuses with the cell membrane, enters, and starts its replication process to multiply its viral load. Coronavirus disease (COVID-19) was initially considered a respiratory infection that could cause pneumonia. However, in severe cases, it extends beyond the respiratory system and becomes a multiorgan disease. This transition from localized respiratory infection to multiorgan disease is due to two main complications of COVID-19. On the one hand, it is due to the so-called cytokine storm: an uncontrolled inflammatory reaction of the immune system in which defensive molecules become aggressive for the body itself. On the other hand, it is due to the formation of a large number of thrombi that can cause myocardial infarction, stroke, and pulmonary embolism. The pulmonary endothelium actively participates in these two processes, becoming the last barrier before the virus spreads throughout the body. In this review, we examine the role of the pulmonary endothelium in response to COVID-19, the existence of potential biomarkers, and the development of novel therapies to restore vascular homeostasis and to protect and/or treat coagulation, thrombosis patients. In addition, we review the thrombotic complications recently observed in patients with COVID-19 and its potential threatening sequelae.
Search related documents:
Co phrase search for related documents- activation similar and acute infection: 1, 2, 3
- active bleeding and low molecular: 1, 2, 3
- acute infection and long term medium: 1, 2, 3, 4, 5, 6, 7, 8, 9
- acute infection and low molecular: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- long term medium and low molecular: 1
Co phrase search for related documents, hyperlinks ordered by date