Selected article for: "acute respiratory syndrome and mutation high rate"

Author: Chitranshi, Nitin; Gupta, Vivek K.; Rajput, Rashi; Godinez, Angela; Pushpitha, Kanishka; Shen, Ting; Mirzaei, Mehdi; You, Yuyi; Basavarajappa, Devaraj; Gupta, Veer; Graham, Stuart L.
Title: Evolving geographic diversity in SARS-CoV2 and in silico analysis of replicating enzyme 3CL(pro) targeting repurposed drug candidates
  • Cord-id: d25qfq0f
  • Document date: 2020_7_9
  • ID: d25qfq0f
    Snippet: BACKGROUND: Severe acute respiratory syndrome (SARS) has been initiating pandemics since the beginning of the century. In December 2019, the world was hit again by a devastating SARS episode that has so far infected almost four million individuals worldwide, with over 200,000 fatalities having already occurred by mid-April 2020, and the infection rate continues to grow exponentially. SARS coronavirus 2 (SARS-CoV-2) is a single stranded RNA pathogen which is characterised by a high mutation rate.
    Document: BACKGROUND: Severe acute respiratory syndrome (SARS) has been initiating pandemics since the beginning of the century. In December 2019, the world was hit again by a devastating SARS episode that has so far infected almost four million individuals worldwide, with over 200,000 fatalities having already occurred by mid-April 2020, and the infection rate continues to grow exponentially. SARS coronavirus 2 (SARS-CoV-2) is a single stranded RNA pathogen which is characterised by a high mutation rate. It is vital to explore the mutagenic capability of the viral genome that enables SARS-CoV-2 to rapidly jump from one host immunity to another and adapt to the genetic pool of local populations. METHODS: For this study, we analysed 2301 complete viral sequences reported from SARS-CoV-2 infected patients. SARS-CoV-2 host genomes were collected from The Global Initiative on Sharing All Influenza Data (GISAID) database containing 9 genomes from pangolin-CoV origin and 3 genomes from bat-CoV origin, Wuhan SARS-CoV2 reference genome was collected from GeneBank database. The Multiple sequence alignment tool, Clustal Omega was used for genomic sequence alignment. The viral replicating enzyme, 3-chymotrypsin-like cysteine protease (3CL(pro)) that plays a key role in its pathogenicity was used to assess its affinity with pharmacological inhibitors and repurposed drugs such as anti-viral flavones, biflavanoids, anti-malarial drugs and vitamin supplements. RESULTS: Our results demonstrate that bat-CoV shares > 96% similar identity, while pangolin-CoV shares 85.98% identity with Wuhan SARS-CoV-2 genome. This in-depth analysis has identified 12 novel recurrent mutations in South American and African viral genomes out of which 3 were unique in South America, 4 unique in Africa and 5 were present in-patient isolates from both populations. Using state of the art in silico approaches, this study further investigates the interaction of repurposed drugs with the SARS-CoV-2 3CL(pro) enzyme, which regulates viral replication machinery. CONCLUSIONS: Overall, this study provides insights into the evolving mutations, with implications to understand viral pathogenicity and possible new strategies for repurposing compounds to combat the nCovid-19 pandemic.

    Search related documents:
    Co phrase search for related documents
    • active site and lopinavir ritonavir: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
    • active site and low binding: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
    • active site and low binding energy: 1, 2, 3, 4, 5, 6
    • active site and low concentration: 1, 2
    • active site and low inhibitory: 1
    • active site residue and lopinavir ritonavir: 1
    • active site residue and low binding: 1
    • additional file and lopinavir ritonavir: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
    • lopinavir ritonavir and low binding: 1, 2, 3
    • lopinavir ritonavir and low binding energy: 1