Selected article for: "epidemic peak and final size"

Author: Sherborne, N.; Blyuss, K. B.; Kiss, I. Z.
Title: Dynamics of Multi-stage Infections on Networks
  • Cord-id: fsqbgyaw
  • Document date: 2015_9_24
  • ID: fsqbgyaw
    Snippet: This paper investigates the dynamics of infectious diseases with a non-exponentially distributed infectious period. This is achieved by considering a multi-stage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the numb
    Document: This paper investigates the dynamics of infectious diseases with a non-exponentially distributed infectious period. This is achieved by considering a multi-stage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider.

    Search related documents:
    Co phrase search for related documents
    • accurate extensive and acute respiratory syndrome: 1, 2, 3, 4
    • accurate model and actual distribution: 1
    • accurate model and actual dynamic: 1
    • accurate model and actual value: 1
    • accurate model and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • actual distribution and acute respiratory syndrome: 1, 2, 3
    • actual value and acute respiratory syndrome: 1
    • acute respiratory syndrome and local clustering: 1