Selected article for: "cell immunity and control infection"

Author: Cun, Yina; Li, Chuanyin; Shi, Lei; Sun, Ming; Dai, Shuying; Sun, Le; Shi, Li; Yao, Yufeng
Title: COVID-19 coronavirus vaccine T cell epitope prediction analysis based on distributions of HLA class I loci (HLA-A, -B, -C) across global populations
  • Cord-id: sd01ylyq
  • Document date: 2020_11_11
  • ID: sd01ylyq
    Snippet: T cell immunity, such as CD4 and/or CD8 T cell responses, plays a vital role in controlling the virus infection and pathological damage. Several studies have reported SARS-CoV-2 proteins could serve as ideal vaccine candidates against SARS-CoV-2 infection by activating the T cell responses. In the current study, based on the SARS-CoV-2 sequence and distribution of host human leukocyte antigen (HLA), we predicted the possible epitopes for the vaccine against SARS-CoV-2 infections. Firstly, the cu
    Document: T cell immunity, such as CD4 and/or CD8 T cell responses, plays a vital role in controlling the virus infection and pathological damage. Several studies have reported SARS-CoV-2 proteins could serve as ideal vaccine candidates against SARS-CoV-2 infection by activating the T cell responses. In the current study, based on the SARS-CoV-2 sequence and distribution of host human leukocyte antigen (HLA), we predicted the possible epitopes for the vaccine against SARS-CoV-2 infections. Firstly, the current study retrieved the SARS-CoV-2 S and N protein sequences from the NCBI Database. Then, using the Immune Epitope Database Analysis Resource, we predicted the CTL epitopes of the SARS-CoV-2 S and N proteins according to worldwide frequency distributions of HLA-A, -B, and -C alleles (>1%). Our results predicted 90 and 106 epitopes of N and S proteins, respectively. Epitope cluster analysis showed 16 and 34 respective clusters of SARS-CoV-2 N and S proteins, which covered 95.91% and 96.14% of the global population, respectively. After epitope conservancy analysis, 8 N protein epitopes and 6 S protein epitopes showed conservancy within two SARS-CoV-2 types. Of these 14 epitopes, 13 could cover SARS coronavirus and Bat SARS-like coronavirus. The remaining epitope (KWPWYIWLGF(1211-1220)) could cover MERS coronavirus. Finally, the 14-epitope combination could vaccinate 89.60% of all individuals worldwide. Our results propose single or combined CTL epitopes predicted in the current study as candidates for vaccines to effectively control SARS-CoV-2 infection and development.

    Search related documents:
    Co phrase search for related documents
    • acute respiratory disease and long term protection: 1, 2, 3, 4, 5, 6, 7, 8
    • acute respiratory disease and long term protection provide: 1, 2, 3
    • acute respiratory syndrome and adaptive immune response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and long term protection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and long term protection provide: 1, 2, 3, 4, 5, 6
    • adaptive immune response and long term protection: 1, 2, 3