Author: Mösbauer, Kirstin; Fritsch, Verena Nadin; Adrian, Lorenz; Bernhardt, Jörg; Gruhlke, Martin Clemens Horst; Slusarenko, Alan John; Niemeyer, Daniela; Antelmann, Haike
                    Title: Allicin inhibits SARS-CoV-2 replication and abrogates the antiviral host response in the Calu-3 proteome  Cord-id: fnak0pzw  Document date: 2021_6_24
                    ID: fnak0pzw
                    
                    Snippet: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic is a major health burden. Volatile garlic organosulfur compounds, such as the thiol-reactive allicin (diallyl thiosulfinate) exert strong antimicrobial activity against various respiratory pathogens. Here, we investigated the antiviral activity of allicin against SARS-CoV-2 in infected Vero E6 and Calu-3 lung cells. Calu-3 cells showed greater allicin tolerance due >4-fold increased GSH levels compared to Vero E6. However,
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic is a major health burden. Volatile garlic organosulfur compounds, such as the thiol-reactive allicin (diallyl thiosulfinate) exert strong antimicrobial activity against various respiratory pathogens. Here, we investigated the antiviral activity of allicin against SARS-CoV-2 in infected Vero E6 and Calu-3 lung cells. Calu-3 cells showed greater allicin tolerance due >4-fold increased GSH levels compared to Vero E6. However, biocompatible allicin doses efficiently inhibited viral replication in both cell lines. Proteome analyses of SARS-CoV-2 infected Calu-3 cells revealed a strong induction of the antiviral interferon-stimulated gene (ISG) signature (e.g. cGAS, Mx1, IFIT, IFIH, IFI16, IFI44, 2’5’OAS and ISG15), pathways of vesicular transport, tight junctions (KIF5A/B/C, OSBPL2, CLTC1, ARHGAP17) and ubiquitin modification (UBE2L3/5), as well as reprogramming of host metabolism, transcription and translation. Allicin abrogated the ISG host response and reverted the host cellular pathways to levels of uninfected Calu-3 cells, confirming the antiviral and immunomodulatory activity of allicin in the host proteome. Thus, biocompatible doses of allicin could be promising for protection of lung cells against SARS-CoV-2.
 
  Search related documents: 
                                Co phrase  search for related documents- absolute quantification and lung tissue: 1
  - abundant cytokine and adaptive innate: 1
  - abundant cytokine and macrophage inflammatory: 1, 2
  - abundant protein and accession number: 1
  - abundant protein and active site: 1
  - abundant protein and low abundant: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date