Author: David E. Gordon; Gwendolyn M. Jang; Mehdi Bouhaddou; Jiewei Xu; Kirsten Obernier; Matthew J O'Meara; Jeffrey Z. Guo; Danielle L. Swaney; Tia A. Tummino; Ruth Huttenhain; Robyn Kaake; Alicia L. Richards; Beril Tutuncuoglu; Helene Foussard; Jyoti Batra; Kelsey Haas; Maya Modak; Minkyu Kim; Paige Haas; Benjamin J. Polacco; Hannes Braberg; Jacqueline M. Fabius; Manon Eckhardt; Margaret Soucheray; Melanie Brewer; Merve Cakir; Michael J. McGregor; Qiongyu Li; Zun Zar Chi Naing; Yuan Zhou; Shiming Peng; Ilsa T. Kirby; James E. Melnyk; John S Chorba; Kevin Lou; Shizhong A. Dai; Wenqi Shen; Ying Shi; Ziyang Zhang; Inigo Barrio-Hernandez; Danish Memon; Claudia Hernandez-Armenta; Christopher J.P. Mathy; Tina Perica; Kala B. Pilla; Sai J. Ganesan; Daniel J. Saltzberg; Rakesh Ramachandran; Xi Liu; Sara B. Rosenthal; Lorenzo Calviello; Srivats Venkataramanan; Yizhu Lin; Stephanie A. Wankowicz; Markus Bohn; Phillip P. Sharp; Raphael Trenker; Janet M. Young; Devin A. Cavero; Joseph Hiatt; Theo Roth; Ujjwal Rathore; Advait Subramanian; Julia Noack; Mathieu Hubert; Ferdinand Roesch; Thomas Vallet; Björn Meyer; Kris M. White; Lisa Miorin; Oren S. Rosenberg; Kliment A. Verba; David Agard; Melanie Ott; Michael Emerman; Davide Ruggero; Adolfo Garcí-Sastre; Natalia Jura; Mark von Zastrow; Jack Taunton; Olivier Schwartz; Marco Vignuzzi; Christophe d'Enfert; Shaeri Mukherjee; Matt Jacobson; Harmit S. Malik; Danica G Fujimori; Trey Ideker; Charles S Craik; Stephen Floor; James S. Fraser; John Gross; Andrej Sali; Tanja Kortemme; Pedro Beltrao; Kevan Shokat; Brian K. Shoichet; Nevan J. Krogan
Title: A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing Document date: 2020_3_22
ID: 38d6gb7o_28
Snippet: Systematic validation using genetic-based approaches 79,80 will be key to determine the functional relevance of these interactions and if the human proteins are being used by the virus or are fighting off infection, information that would inform future pharmacological studies. It is important to note that pharmacological intervention with the agents we identified in this study could be either detrimental or beneficial for infection. For instance,.....
Document: Systematic validation using genetic-based approaches 79,80 will be key to determine the functional relevance of these interactions and if the human proteins are being used by the virus or are fighting off infection, information that would inform future pharmacological studies. It is important to note that pharmacological intervention with the agents we identified in this study could be either detrimental or beneficial for infection. For instance, the HDAC2 inhibitors may compound the potential action of the Nsp5 protease to hydrolyze this human protein. Future work will involve generation of protein-protein interaction maps in different human cell types, as well as bat cells, and the study of related coronaviruses including SARS-CoV, MERS-CoV and the less virulent OC43 5 , data that will allow for valuable cross-species and viral evolution studies. Targeted biochemical and structural studies will also be crucial for a deeper understanding of the viral-host complexes, which will inform more targeted drug design.
Search related documents:
Co phrase search for related documents- pharmacological intervention and study identify: 1
- pharmacological study and potential action: 1, 2, 3
- pharmacological study and protein protein: 1, 2, 3, 4, 5, 6, 7, 8, 9
- pharmacological study and study identify: 1, 2, 3
- pharmacological study and viral host: 1
- potential action and protein protein: 1, 2, 3, 4, 5, 6, 7
- potential action and study identify: 1, 2, 3, 4, 5, 6, 7
- potential action and viral host: 1, 2, 3, 4, 5, 6, 7, 8
- potential action and viral host complex: 1
- protein protein and study identify: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44
- protein protein and target drug design: 1, 2, 3, 4, 5, 6, 7
- protein protein and viral host: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
- protein protein and viral host complex: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- protein protein interaction map and viral host: 1, 2, 3
- protein protein interaction map and viral host complex: 1, 2
- structural biochemical study and target drug design: 1
- study identify and target drug design: 1, 2
- study identify and viral host: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
- target drug design and viral host: 1, 2, 3, 4, 5, 6, 7
Co phrase search for related documents, hyperlinks ordered by date