Author: Lokwani, R.; Gaikwad, A.; Kulkarni, V.; Pant, A.; Kharat, A.
Title: Automated Detection of COVID-19 from CT Scans using Convolutional Neural Networks Cord-id: dmuxs1af Document date: 2021_1_1
ID: dmuxs1af
Snippet: COVID-19 is an infectious disease that causes respiratory problems similar to those caused by SARS-CoV (2003). In this paper, we propose a prospective screening tool wherein we use chest CT scans to diagnose the patients for COVID-19 pneumonia. We use a set of open-source images, available as individual CT slices, and full CT scans from a private Indian Hospital to train our model. We build a 2D segmentation model using the U-Net architecture, which gives the output by marking out the region of
Document: COVID-19 is an infectious disease that causes respiratory problems similar to those caused by SARS-CoV (2003). In this paper, we propose a prospective screening tool wherein we use chest CT scans to diagnose the patients for COVID-19 pneumonia. We use a set of open-source images, available as individual CT slices, and full CT scans from a private Indian Hospital to train our model. We build a 2D segmentation model using the U-Net architecture, which gives the output by marking out the region of infection. Our model achieves a sensitivity of 0.96 (95% CI: 0.88-1.00) and a specificity of 0.88 (95% CI: 0.82-0.94). Additionally, we derive a logic for converting our slice-level predictions to scan-level, which helps us reduce the false positives.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date