Author: Wiemer, Andrew J.
Title: Metabolic Efficacy of Phosphate Prodrugs and the Remdesivir Paradigm Cord-id: w04uggnd Document date: 2020_7_24
ID: w04uggnd
Snippet: [Image: see text] Drugs that contain phosphates (and phosphonates or phosphinates) have intrinsic absorption issues and are therefore often delivered in prodrug forms to promote their uptake. Effective prodrug forms distribute their payload to the site of the intended target and release it efficiently with minimal byproduct toxicity. The ability to balance unwanted payload release during transit with desired release at the site of action is critical to prodrug efficacy. Despite decades of resear
Document: [Image: see text] Drugs that contain phosphates (and phosphonates or phosphinates) have intrinsic absorption issues and are therefore often delivered in prodrug forms to promote their uptake. Effective prodrug forms distribute their payload to the site of the intended target and release it efficiently with minimal byproduct toxicity. The ability to balance unwanted payload release during transit with desired release at the site of action is critical to prodrug efficacy. Despite decades of research on prodrug forms, choosing the ideal prodrug form remains a challenge which is often solved empirically. The recent emergency use authorization of the antiviral remdesivir for COVID-19 exemplifies a new approach for delivery of phosphate prodrugs by parenteral dosing, which minimizes payload release during transit and maximizes tissue payload distribution. This review focuses on the role of metabolic activation in efficacy during oral and parenteral dosing of phosphate, phosphonate, and phosphinate prodrugs. Through examining prior structure–activity studies on prodrug forms and the choices that led to development of remdesivir and other clinical drugs and drug candidates, a better understanding of their ability to distribute to the planned site of action, such as the liver, plasma, PBMCs, or peripheral tissues, can be gained. The structure–activity relationships described here will facilitate the rational design of future prodrugs.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date