Author: Tan, Chang Wei; Bergmeir, Christoph; Petitjean, Francois; Webb, Geoffrey I.
                    Title: Time Series Regression  Cord-id: gkhgaiar  Document date: 2020_6_23
                    ID: gkhgaiar
                    
                    Snippet: This paper introduces Time Series Regression (TSR): a little-studied task of which the aim is to learn the relationship between a time series and a continuous target variable. In contrast to time series classification (TSC), which predicts a categorical class label, TSR predicts a numerical value. This task generalizes forecasting, relaxing the requirement that the value predicted be a future value of the input series or primarily depend on more recent values. In this paper, we motivate and intr
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: This paper introduces Time Series Regression (TSR): a little-studied task of which the aim is to learn the relationship between a time series and a continuous target variable. In contrast to time series classification (TSC), which predicts a categorical class label, TSR predicts a numerical value. This task generalizes forecasting, relaxing the requirement that the value predicted be a future value of the input series or primarily depend on more recent values. In this paper, we motivate and introduce this task, and benchmark possible solutions to tackling it on a novel archive of 19 TSR datasets which we have assembled. Our results show that the state-of-the-art TSC model Rocket, when adapted for regression, performs the best overall compared to other TSC models and state-of-the-art machine learning (ML) models such as XGBoost, Random Forest and Support Vector Regression.More importantly, we show that much research is needed in this field to improve the accuracy of ML models.
 
  Search related documents: 
                                Co phrase  search for related documents- absolute error and activation function: 1, 2
- absolute error and loss function: 1, 2
- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
- absolute error and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
 
                                Co phrase  search for related documents, hyperlinks ordered by date