Author: Mohammed, Youssef M M; Mabrouk, Mona E M
Title: Optimization of methylene blue degradation by Aspergillus terreus YESM 3 using response surface methodology. Cord-id: bgb53jy2 Document date: 2020_11_1
ID: bgb53jy2
Snippet: Synthetic dyes released from many industries cause pollution problems in aquatic environments affecting public health. The present study aimed to explore the potentiality of Aspergillus terreus YESM 3 (accession number LM653117) for colour removal of three different dyes: methylene blue (MB), malachite green (MG) and safranin (S). Results showed that the tolerance index of the studied fungus against tested dyes decreased in the order: methylene blue, safranin and malachite green. Removal of meth
Document: Synthetic dyes released from many industries cause pollution problems in aquatic environments affecting public health. The present study aimed to explore the potentiality of Aspergillus terreus YESM 3 (accession number LM653117) for colour removal of three different dyes: methylene blue (MB), malachite green (MG) and safranin (S). Results showed that the tolerance index of the studied fungus against tested dyes decreased in the order: methylene blue, safranin and malachite green. Removal of methylene blue colour was improved by using Box-Behnken design. Optimum condition for methylene blue biodegradation in Czapek Dox broth was achieved at pH 6, of 31.41 mg/L dye concentration and an inoculum of 5.7778 × 104 (conidia/mL) with biodegradation of 89.41%. Thus, a novel and eco-friendly system for the biodegradation of dyes using Box-Behnken design has been efficiently developed. Accordingly, A. terreus YESM 3 can be professionally used for bioremediation of methylene blue dye in wastewater and removal of environmental pollution.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date