Author: Bathwal, R.; Chitta, P.; Tirumala, K.; Varadarajan, V.
                    Title: Ensemble Machine Learning Methods for Modeling COVID19 Deaths  Cord-id: sgkourtj  Document date: 2020_10_4
                    ID: sgkourtj
                    
                    Snippet: Using a hybrid of machine learning and epidemiological approaches, we propose a novel data-driven approach in predicting US COVID-19 deaths at a county level. The model gives a more complete description of the daily death distribution, outputting quantile-estimates instead of mean deaths, where the model's objective is to minimize the pinball loss on deaths reported by the New York Times coronavirus county dataset. The resulting quantile estimates accurately forecast deaths at an individual-coun
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Using a hybrid of machine learning and epidemiological approaches, we propose a novel data-driven approach in predicting US COVID-19 deaths at a county level. The model gives a more complete description of the daily death distribution, outputting quantile-estimates instead of mean deaths, where the model's objective is to minimize the pinball loss on deaths reported by the New York Times coronavirus county dataset. The resulting quantile estimates accurately forecast deaths at an individual-county level for a variable-length forecast period, and the approach generalizes well across different forecast period lengths. We won the Caltech-run modeling competition out of 50+ teams, and our aggregate is competitive with the best COVID-19 modeling systems (on root mean squared error).
 
  Search related documents: 
                                Co phrase  search for related documents- local government and machine learning: 1, 2
  - local scale and machine learning: 1, 2, 3, 4
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date