Author: Ding, Yamin; Fu, Yuxuan; Kang, Yanmei
Title: Stochastic analysis of COVID-19 by a SEIR model with Lévy noise Cord-id: gs7j8fai Document date: 2021_1_1
ID: gs7j8fai
Snippet: We propose a Lévy noise-driven susceptible-exposed-infected-recovered model incorporating media coverage to analyze the outbreak of COVID-19. We conduct a theoretical analysis of the stochastic model by the suitable Lyapunov function, including the existence and uniqueness of the positive solution, the dynamic properties around the disease-free equilibrium and the endemic equilibrium; we deduce a stochastic basic reproduction number R0 s for the extinction of disease, that is, if R0 s≤1,
Document: We propose a Lévy noise-driven susceptible-exposed-infected-recovered model incorporating media coverage to analyze the outbreak of COVID-19. We conduct a theoretical analysis of the stochastic model by the suitable Lyapunov function, including the existence and uniqueness of the positive solution, the dynamic properties around the disease-free equilibrium and the endemic equilibrium; we deduce a stochastic basic reproduction number R0 s for the extinction of disease, that is, if R0 s≤1, the disease will go to extinction. Particularly, we fit the data from Brazil to predict the trend of the epidemic. Our main findings include the following: (i) stochastic perturbation may affect the dynamic behavior of the disease, and larger noise will be more beneficial to control its spread; (ii) strengthening social isolation, increasing the cure rate and media coverage can effectively control the spread of disease. Our results support the feasible ways of containing the outbreak of the epidemic.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date