Selected article for: "APACHE ii score and mechanical ventilation"

Author: Lahmer, Tobias; Kriescher, Silja; Herner, Alexander; Rothe, Kathrin; Spinner, Christoph D.; Schneider, Jochen; Mayer, Ulrich; Neuenhahn, Michael; Hoffmann, Dieter; Geisler, Fabian; Heim, Markus; Schneider, Gerhard; Schmid, Roland M.; Huber, Wolfgang; Rasch, Sebastian
Title: Invasive pulmonary aspergillosis in critically ill patients with severe COVID-19 pneumonia: Results from the prospective AspCOVID-19 study
  • Cord-id: g8h8or5z
  • Document date: 2021_3_17
  • ID: g8h8or5z
    Snippet: BACKGROUND: Superinfections, including invasive pulmonary aspergillosis (IPA), are well-known complications of critically ill patients with severe viral pneumonia. Aim of this study was to evaluate the incidence, risk factors and outcome of IPA in critically ill patients with severe COVID-19 pneumonia. METHODS: We prospectively screened 32 critically ill patients with severe COVID-19 pneumonia for a time period of 28 days using a standardized study protocol for oberservation of developement of C
    Document: BACKGROUND: Superinfections, including invasive pulmonary aspergillosis (IPA), are well-known complications of critically ill patients with severe viral pneumonia. Aim of this study was to evaluate the incidence, risk factors and outcome of IPA in critically ill patients with severe COVID-19 pneumonia. METHODS: We prospectively screened 32 critically ill patients with severe COVID-19 pneumonia for a time period of 28 days using a standardized study protocol for oberservation of developement of COVID-19 associated invasive pulmonary aspergillosis (CAPA). We collected laboratory, microbiological, virological and clinical parameters at defined timepoints in combination with galactomannan-antigen-detection from nondirected bronchial lavage (NBL). We used logistic regression analyses to assess if COVID-19 was independently associated with IPA and compared it with matched controls. FINDINGS: CAPA was diagnosed at a median of 4 days after ICU admission in 11/32 (34%) of critically ill patients with severe COVID-19 pneumonia as compared to 8% in the control cohort. In the COVID-19 cohort, mean age, APACHE II score and ICU mortality were higher in patients with CAPA than in patients without CAPA (36% versus 9.5%; p<0.001). ICU stay (21 versus 17 days; p = 0.340) and days of mechanical ventilation (20 versus 15 days; p = 0.570) were not different between both groups. In regression analysis COVID-19 and APACHE II score were independently associated with IPA. INTERPRETATION: CAPA is highly prevalent and associated with a high mortality rate. COVID-19 is independently associated with invasive pulmonary aspergillosis. A standardized screening and diagnostic approach as presented in our study can help to identify affected patients at an early stage.

    Search related documents:
    Co phrase search for related documents
    • acute ards respiratory distress syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute ards respiratory distress syndrome and logistic regression analysis: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
    • acute ards respiratory distress syndrome and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
    • acute ards respiratory distress syndrome and low respiratory tract: 1, 2
    • acute ards respiratory distress syndrome and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute ards respiratory distress syndrome and lung injury cause: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
    • acute ards respiratory distress syndrome and lung injury pathophysiology: 1, 2, 3
    • acute ards respiratory distress syndrome and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute ards respiratory distress syndrome develop and logistic regression: 1
    • acute ards respiratory distress syndrome develop and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
    • acute ards respiratory distress syndrome develop and lung injury cause: 1
    • acute ards respiratory distress syndrome develop and lymphocyte count: 1, 2
    • admission test and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
    • admission test and logistic regression analysis: 1, 2, 3, 4, 5, 6
    • admission test and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
    • admission test and lung injury: 1
    • admission test and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
    • logistic regression and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
    • logistic regression and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25