Author: Jaimes, Javier A.; André, Nicole M.; Millet, Jean K.; Whittaker, Gary R.
Title: Structural modeling of 2019-novel coronavirus (nCoV) spike protein reveals a proteolytically-sensitive activation loop as a distinguishing feature compared to SARS-CoV and related SARS-like coronaviruses Cord-id: xa6kwguo Document date: 2020_2_18
ID: xa6kwguo
Snippet: The 2019 novel coronavirus (2019-nCoV) is currently causing a widespread outbreak centered on Hubei province, China and is a major public health concern. Taxonomically 2019-nCoV is closely related to SARS-CoV and SARS-related bat coronaviruses, and it appears to share a common receptor with SARS-CoV (ACE-2). Here, we perform structural modeling of the 2019-nCoV spike glycoprotein. Our data provide support for the similar receptor utilization between 2019-nCoV and SARS-CoV, despite a relatively l
Document: The 2019 novel coronavirus (2019-nCoV) is currently causing a widespread outbreak centered on Hubei province, China and is a major public health concern. Taxonomically 2019-nCoV is closely related to SARS-CoV and SARS-related bat coronaviruses, and it appears to share a common receptor with SARS-CoV (ACE-2). Here, we perform structural modeling of the 2019-nCoV spike glycoprotein. Our data provide support for the similar receptor utilization between 2019-nCoV and SARS-CoV, despite a relatively low amino acid similarity in the receptor binding module. Compared to SARS-CoV, we identify an extended structural loop containing basic amino acids at the interface of the receptor binding (S1) and fusion (S2) domains, which we predict to be proteolytically-sensitive. We suggest this loop confers fusion activation and entry properties more in line with MERS-CoV and other coronaviruses, and that the presence of this structural loop in 2019-nCoV may affect virus stability and transmission.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date