Author: Pérez-Köhler, Bárbara; Bayon, Yves; Bellón, Juan Manuel
Title: Mesh Infection and Hernia Repair: A Review. Cord-id: gds8vcjv Document date: 2016_1_1
ID: gds8vcjv
Snippet: BACKGROUND The use of a prosthetic mesh to repair a tissue defect may produce a series of post-operative complications, among which infection is the most feared and one of the most devastating. When occurring, bacterial adherence and biofilm formation on the mesh surface affect the implant's tissue integration and host tissue regeneration, making preventive measures to control prosthetic infection a major goal of prosthetic mesh improvement. METHODS This article reviews the literature on the inf
Document: BACKGROUND The use of a prosthetic mesh to repair a tissue defect may produce a series of post-operative complications, among which infection is the most feared and one of the most devastating. When occurring, bacterial adherence and biofilm formation on the mesh surface affect the implant's tissue integration and host tissue regeneration, making preventive measures to control prosthetic infection a major goal of prosthetic mesh improvement. METHODS This article reviews the literature on the infection of prosthetic meshes used in hernia repair to describe the in vitro and in vivo models used to examine bacterial adherence and biofilm formation on the surface of different biomaterials. Also discussed are the prophylactic measures used to control implant infection ranging from meshes soaked in antibiotics to mesh coatings that release antimicrobial agents in a controlled manner. RESULTS Prosthetic architecture has a direct effect on bacterial adherence and biofilm formation. Absorbable synthetic materials are more prone to bacterial colonization than non-absorbable materials. The reported behavior of collagen biomeshes, also called xenografts, in a contaminated environment has been contradictory, and their use in this setting needs further clinical investigation. New prophylactic mesh designs include surface modifications with an anti-adhesive substance or pre-treatment with antibacterial agents or metal coatings. CONCLUSIONS The use of polymer coatings that slowly release non-antibiotic drugs seems to be a good strategy to prevent implant contamination and reduce the onset of resistant bacterial strains. Even though the prophylactic designs described in this review are mainly focused on hernia repair meshes, these strategies can be extrapolated to other implantable devices, regardless of their design, shape or dimension.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date