Author: Yang, Wenjie; Wang, Sitong; Peng, Zhenhui; Shi, Chuhan; Ma, Xiaojuan; Yang, Diyi
Title: Know it to Defeat it: Exploring Health Rumor Characteristics and Debunking Efforts on Chinese Social Media during COVID-19 Crisis Cord-id: h1zscnj1 Document date: 2021_9_25
ID: h1zscnj1
Snippet: Health-related rumors spreading online during a public crisis may pose a serious threat to people's well-being. Existing crisis informatics research lacks in-depth insights into the characteristics of health rumors and the efforts to debunk them on social media in a pandemic. To fill this gap, we conduct a comprehensive analysis of four months of rumor-related online discussion during COVID-19 on Weibo, a Chinese microblogging site. Results suggest that the dread (cause fear) type of health rumo
Document: Health-related rumors spreading online during a public crisis may pose a serious threat to people's well-being. Existing crisis informatics research lacks in-depth insights into the characteristics of health rumors and the efforts to debunk them on social media in a pandemic. To fill this gap, we conduct a comprehensive analysis of four months of rumor-related online discussion during COVID-19 on Weibo, a Chinese microblogging site. Results suggest that the dread (cause fear) type of health rumors provoked significantly more discussions and lasted longer than the wish (raise hope) type. We further explore how four kinds of social media users (i.e., government, media, organization, and individual) combat health rumors, and identify their preferred way of sharing debunking information and the key rhetoric strategies used in the process. We examine the relationship between debunking and rumor discussions using a Granger causality approach, and show the efficacy of debunking in suppressing rumor discussions, which is time-sensitive and varies across rumor types and debunkers. Our results can provide insights into crisis informatics and risk management on social media in pandemic settings.
Search related documents:
Co phrase search for related documents- accurate prediction and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
- active engagement and logistic regression: 1, 2, 3, 4
- active role and logistic regression: 1, 2, 3, 4
Co phrase search for related documents, hyperlinks ordered by date