Author: Zhou, Peng; Cowled, Chris; Mansell, Ashley; Monaghan, Paul; Green, Diane; Wu, Lijun; Shi, Zhengli; Wang, Lin-Fa; Baker, Michelle L.
Title: IRF7 in the Australian Black Flying Fox, Pteropus alecto: Evidence for a Unique Expression Pattern and Functional Conservation Cord-id: f2wvh6la Document date: 2014_8_6
ID: f2wvh6la
Snippet: As the only flying mammal, bats harbor a number of emerging and re-emerging viruses, many of which cause severe diseases in humans and other mammals yet result in no clinical symptoms in bats. As the master regulator of the interferon (IFN)-dependent immune response, IFN regulatory factor 7 (IRF7) plays a central role in innate antiviral immunity. To explore the role of bat IRF7 in the regulation of the IFN response, we performed sequence and functional analysis of IRF7 from the pteropid bat, Pt
Document: As the only flying mammal, bats harbor a number of emerging and re-emerging viruses, many of which cause severe diseases in humans and other mammals yet result in no clinical symptoms in bats. As the master regulator of the interferon (IFN)-dependent immune response, IFN regulatory factor 7 (IRF7) plays a central role in innate antiviral immunity. To explore the role of bat IRF7 in the regulation of the IFN response, we performed sequence and functional analysis of IRF7 from the pteropid bat, Pteropus alecto. Our results demonstrate that bat IRF7 retains the ability to bind to MyD88 and activate the IFN response despite unique changes in the MyD88 binding domain. We also demonstrate that bat IRF7 has a unique expression pattern across both immune and non-immune related tissues and is inducible by double-strand RNA. The broad tissue distribution of IRF7 may provide bats with an enhanced ability to rapidly activate the IFN response in a wider range of tissues compared to other mammals. The importance of IRF7 in antiviral activity against the bat reovirus, Pulau virus was confirmed by siRNA knockdown of IRF7 in bat cells resulting in enhanced viral replication. Our results highlight the importance of IRF7 in innate antiviral immunity in bats.
Search related documents:
Co phrase search for related documents- aahl australian animal health laboratory and acute respiratory syndrome: 1
- accession number and acid inducible: 1
- accession number and acid inducible gene: 1
- accession number and acute respiratory syndrome: 1, 2, 3
- acid inducible and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- acid inducible and adaptive immune response: 1, 2, 3, 4, 5
- acid inducible and adaptor molecule: 1, 2, 3
- acid inducible and adaptor protein: 1, 2, 3, 4, 5, 6, 7, 8
- acid inducible gene and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- acid inducible gene and adaptive immune response: 1, 2, 3, 4, 5
- acid inducible gene and adaptor molecule: 1, 2, 3
- acid inducible gene and adaptor protein: 1, 2, 3, 4, 5, 6, 7, 8
- active target and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- acute respiratory syndrome and adaptive immune response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adaptor molecule: 1
- acute respiratory syndrome and adaptor protein: 1, 2, 3, 4, 5
- acute respiratory syndrome and luciferase activity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- adaptive immune response and luciferase activity: 1
Co phrase search for related documents, hyperlinks ordered by date