Author: Shinde, Shradha; Joshi, Jay; Mareedu, Sowmya; Kim, Yeon Pyo; Woo, Jongwook
Title: Scalable Predictive Time-Series Analysis of COVID-19: Cases and Fatalities Cord-id: eziv8ciw Document date: 2021_4_22
ID: eziv8ciw
Snippet: COVID 19 is an acute disease that started spreading throughout the world, beginning in December 2019. It has spread worldwide and has affected more than 7 million people, and 200 thousand people have died due to this infection as of Oct 2020. In this paper, we have forecasted the number of deaths and the confirmed cases in Los Angeles and New York of the United States using the traditional and Big Data platforms based on the Times Series: ARIMA and ETS. We also implemented a more sophisticated t
Document: COVID 19 is an acute disease that started spreading throughout the world, beginning in December 2019. It has spread worldwide and has affected more than 7 million people, and 200 thousand people have died due to this infection as of Oct 2020. In this paper, we have forecasted the number of deaths and the confirmed cases in Los Angeles and New York of the United States using the traditional and Big Data platforms based on the Times Series: ARIMA and ETS. We also implemented a more sophisticated time-series forecast model using Facebook Prophet API. Furthermore, we developed the classification models: Logistic Regression and Random Forest regression to show that the Weather does not affect the number of the confirmed cases. The models are built and run in legacy systems (Azure ML Studio) and Big Data systems (Oracle Cloud and Databricks). Besides, we present the accuracy of the models.
Search related documents:
Co phrase search for related documents- additive model and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9
- additive model and los angeles: 1
- additive model and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- additive model and machine learning model: 1, 2, 3, 4, 5, 6, 7
- logistic function and machine learning: 1, 2, 3
- logistic regression and los angeles: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- logistic regression and machine learn: 1
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression and machine learning application: 1, 2, 3, 4
- logistic regression and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression model and machine learn: 1
- logistic regression model and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression model and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- logistic regression random forrest and machine learning: 1
- los angeles and machine learning: 1, 2, 3, 4, 5, 6, 7, 8
Co phrase search for related documents, hyperlinks ordered by date