Author: Yousri, Dalia; Abd Elaziz, Mohamed; Abualigah, Laith; Oliva, Diego; Al-qaness, Mohammed A.A.; Ewees, Ahmed A.
Title: COVID-19 X-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions Cord-id: f31gcurc Document date: 2020_12_24
ID: f31gcurc
Snippet: Classification of COVID-19 X-ray images to determine the patient’s health condition is a critical issue these days since X-ray images provide more information about the patient’s lung status. To determine the COVID-19 case from other normal and abnormal cases, this work proposes an alternative method that extracted the informative features from X-ray images, leveraging on a new feature selection method to determine the relevant features. As such, an enhanced cuckoo search optimization algori
Document: Classification of COVID-19 X-ray images to determine the patient’s health condition is a critical issue these days since X-ray images provide more information about the patient’s lung status. To determine the COVID-19 case from other normal and abnormal cases, this work proposes an alternative method that extracted the informative features from X-ray images, leveraging on a new feature selection method to determine the relevant features. As such, an enhanced cuckoo search optimization algorithm (CS) is proposed using fractional-order calculus (FO) and four different heavy-tailed distributions in place of the Lévy flight to strengthen the algorithm performance during dealing with COVID-19 multi-class classification optimization task. The classification process includes three classes, called normal patients, COVID-19 infected patients, and pneumonia patients. The distributions used are Mittag-Leffler distribution, Cauchy distribution, Pareto distribution, and Weibull distribution. The proposed FO-CS variants have been validated with eighteen UCI data-sets as the first series of experiments. For the second series of experiments, two data-sets for COVID-19 X-ray images are considered. The proposed approach results have been compared with well-regarded optimization algorithms. The outcomes assess the superiority of the proposed approach for providing accurate results for UCI and COVID-19 data-sets with remarkable improvements in the convergence curves, especially with applying Weibull distribution instead of Lévy flight.
Search related documents:
Co phrase search for related documents- abnormal normal and accuracy average: 1, 2, 3
- abnormal normal image and accuracy average: 1
Co phrase search for related documents, hyperlinks ordered by date