Selected article for: "human test and plasma cell"

Author: Pitino, M. A.; O'Connor, D. L.; McGeer, A. J.; Unger, S.
Title: The impact of thermal pasteurization on viral load in human milk and other matrices: A rapid review
  • Cord-id: z16or2y1
  • Document date: 2020_5_26
  • ID: z16or2y1
    Snippet: Holder pasteurization (62.5{degrees}C, 30 min) of human milk (HM) is thought to reduce the risk of transmitting viruses to an infant. Some viruses may be secreted into milk- others may be contaminants. The effect of thermal pasteurization on viruses in HM has yet to be rigorously reviewed. The objective of this study is to characterize the effect of commonly used pasteurization techniques on viruses in HM and non-HM matrices. Databases (MEDLINE, Embase, Web of Science) were searched from incepti
    Document: Holder pasteurization (62.5{degrees}C, 30 min) of human milk (HM) is thought to reduce the risk of transmitting viruses to an infant. Some viruses may be secreted into milk- others may be contaminants. The effect of thermal pasteurization on viruses in HM has yet to be rigorously reviewed. The objective of this study is to characterize the effect of commonly used pasteurization techniques on viruses in HM and non-HM matrices. Databases (MEDLINE, Embase, Web of Science) were searched from inception to April 20th, 2020 for primary research articles assessing the impact of pasteurization on viral load or detection of live virus. Reviews were excluded, as were studies lacking quantitative measurements or those assessing pasteurization as a component of a larger process. Overall, 65,131 reports were identified, and 108 studies included. Pasteurization of HM at a minimum temperature of 56{degrees}C-60{degrees}C is effective at reducing detectable live virus. In cell culture media or plasma, coronaviruses (e.g., SARS-CoV, SARS-CoV-2, MERS) are highly susceptible to heating at [≥]56{degrees}C. Although pasteurization parameters and matrices reported vary, all viruses studied, with the exception of parvoviruses, were susceptible to thermal killing. Future research important for the study of novel viruses should standardize pasteurization protocols and should test viral inactivation using a human milk matrix.

    Search related documents:
    Co phrase search for related documents
    • abstract screening and live virus: 1
    • abstract screening title and additional research: 1, 2, 3, 4
    • abstract screening title and live virus: 1
    • abstract title and additional research: 1, 2, 3, 4, 5
    • abstract title and live virus: 1
    • additional research and log reduction: 1, 2
    • live virus and load detectable: 1, 2
    • live virus and load viral infectivity: 1
    • live virus and log reduction: 1, 2, 3