Author: Ahammed, K.; Satu, M. S.; Abedin, M. Z.; Rahaman, M. A.; Islam, S. M. S.
Title: Early Detection of Coronavirus Cases Using Chest X-ray Images Employing Machine Learning and Deep Learning Approaches Cord-id: x7fq9gz6 Document date: 2020_6_8
ID: x7fq9gz6
Snippet: This study aims to investigate if applying machine learning and deep learning approaches on chest X-ray images can detect cases of coronavirus. The chest X-ray datasets were obtained from Kaggle and Github and pre-processed into a single dataset using random sampling. We applied several machine learning and deep learning methods including Convolutional Neural Networks (CNN) along with classical machine learners. In deep learning procedure, several pre-trained models were also employed transfer l
Document: This study aims to investigate if applying machine learning and deep learning approaches on chest X-ray images can detect cases of coronavirus. The chest X-ray datasets were obtained from Kaggle and Github and pre-processed into a single dataset using random sampling. We applied several machine learning and deep learning methods including Convolutional Neural Networks (CNN) along with classical machine learners. In deep learning procedure, several pre-trained models were also employed transfer learning in this dataset. Our proposed CNN model showed the highest accuracy (94.03%), AUC (95.52%), f-measure (94.03%), sensitivity (94.03%) and specificity (97.01%) as well as the lowest fall out (4.48%) and miss rate (2.98%) respectively. We also evaluated specificity and fall out rate along with accuracy to identify non-COVID-19 individuals more accurately. As a result, our new models might help to early detect COVID-19 patients and prevent community transmission compared to traditional methods.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date