Selected article for: "confidence interval and neural network"

Author: Zhong, Yi
Title: Using Deep Convolutional Neural Networks to Diagnose COVID-19 From Chest X-Ray Images
  • Cord-id: fazehqrn
  • Document date: 2020_7_19
  • ID: fazehqrn
    Snippet: The COVID-19 epidemic has become a major safety and health threat worldwide. Imaging diagnosis is one of the most effective ways to screen COVID-19. This project utilizes several open-source or public datasets to present an open-source dataset of COVID-19 CXRs, named COVID-19-CXR-Dataset, and introduces a deep convolutional neural network model. The model validates on 740 test images and achieves 87.3% accuracy, 89.67 % precision, and 84.46% recall, and correctly classifies 98 out of 100 COVID-1
    Document: The COVID-19 epidemic has become a major safety and health threat worldwide. Imaging diagnosis is one of the most effective ways to screen COVID-19. This project utilizes several open-source or public datasets to present an open-source dataset of COVID-19 CXRs, named COVID-19-CXR-Dataset, and introduces a deep convolutional neural network model. The model validates on 740 test images and achieves 87.3% accuracy, 89.67 % precision, and 84.46% recall, and correctly classifies 98 out of 100 COVID-19 x-ray images in test set with more than 81% prediction probability under the condition of 95% confidence interval. This project may serve as a reference for other researchers aiming to advance the development of deep learning applications in medical imaging.

    Search related documents:
    Co phrase search for related documents
    • loss function and low confidence: 1, 2