Author: Hectors, Stefanie J.; Riyahi, Sadjad; Dev, Hreedi; Krishnan, Karthik; Margolis, Daniel J. A.; Prince, Martin R.
Title: Multivariate analysis of CT imaging, laboratory, and demographical features for prediction of acute kidney injury in COVID-19 patients: a Bi-centric analysis Cord-id: zdu92icq Document date: 2020_10_24
ID: zdu92icq
Snippet: PURPOSE: To develop and externally validate a multivariate prediction model for the prediction of acute kidney injury (AKI) in COVID-19, based on baseline renal perfusion from contrast-enhanced CT together with clinical and laboratory parameters. METHODS: In this retrospective IRB-approved study, we identified COVID-19 patients who had a standard-of-care contrast-enhanced abdominal CT scan within 5 days of their COVID-19 diagnosis at our institution (training set; n = 45, mean age 65 years, M/F
Document: PURPOSE: To develop and externally validate a multivariate prediction model for the prediction of acute kidney injury (AKI) in COVID-19, based on baseline renal perfusion from contrast-enhanced CT together with clinical and laboratory parameters. METHODS: In this retrospective IRB-approved study, we identified COVID-19 patients who had a standard-of-care contrast-enhanced abdominal CT scan within 5 days of their COVID-19 diagnosis at our institution (training set; n = 45, mean age 65 years, M/F 23/22) and at a second institution (validation set; n = 41, mean age 61 years, M/F 22/19). The CT renal perfusion parameter, cortex-to-aorta enhancement index (CAEI), was measured in both sets. A multivariate logistic regression model for predicting AKI was constructed from the training set with stepwise feature selection with CAEI together with demographical and baseline laboratory/clinical data used as input variables. Model performance in the training and validation set was evaluated with ROC analysis. RESULTS: AKI developed in 16 patients (35.6%) of the training set and in 6 patients (14.6%) of the validation set. Baseline CAEI was significantly lower in the patients that ultimately developed AKI (P = 0.003). Logistic regression identified a model combining baseline CAEI, blood urea nitrogen, and gender as most significant predictor of AKI. This model showed excellent diagnostic performance for prediction of AKI in the training set (AUC = 0.89, P < 0.001) and good performance in the validation set (AUC 0.78, P = 0.030). CONCLUSION: Our results show diminished renal perfusion preceding AKI and a promising role of CAEI, combined with laboratory and demographic markers, for prediction of AKI in COVID-19.
Search related documents:
Co phrase search for related documents- abdominal ct and logistic regression: 1, 2, 3
- abdominal ct scan and logistic regression: 1, 2
- abdominal pain and acute aki kidney injury: 1, 2, 3, 4, 5, 6
- abdominal pain and admission time: 1, 2, 3, 4, 5, 6, 7
- abdominal pain and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute aki kidney injury and additional value: 1
- acute aki kidney injury and admission time: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- additional value and admission time: 1
Co phrase search for related documents, hyperlinks ordered by date