Author: Yang, Xiaodi; Yang, Shiping; Lian, Xianyi; Wuchty, Stefan; Zhang, Ziding
Title: Transfer learning via multi-scale convolutional neural layers for human–virus protein–protein interaction prediction Cord-id: xmjry6xi Document date: 2021_7_17
ID: xmjry6xi
Snippet: MOTIVATION: To complement experimental efforts, machine learning-based computational methods are playing an increasingly important role to predict human–virus protein–protein interactions (PPIs). Furthermore, transfer learning can effectively apply prior knowledge obtained from a large source dataset/task to a small target dataset/task, improving prediction performance. RESULTS: To predict interactions between human and viral proteins, we combine evolutionary sequence profile features with a
Document: MOTIVATION: To complement experimental efforts, machine learning-based computational methods are playing an increasingly important role to predict human–virus protein–protein interactions (PPIs). Furthermore, transfer learning can effectively apply prior knowledge obtained from a large source dataset/task to a small target dataset/task, improving prediction performance. RESULTS: To predict interactions between human and viral proteins, we combine evolutionary sequence profile features with a Siamese convolutional neural network (CNN) architecture and a multi-layer perceptron. Our architecture outperforms various feature encodings-based machine learning and state-of-the-art prediction methods. As our main contribution, we introduce two transfer learning methods (i.e. ‘frozen’ type and ‘fine-tuning’ type) that reliably predict interactions in a target human–virus domain based on training in a source human–virus domain, by retraining CNN layers. Finally, we utilize the ‘frozen’ type transfer learning approach to predict human–SARS-CoV-2 PPIs, indicating that our predictions are topologically and functionally similar to experimentally known interactions. Availability and implementation: The source codes and datasets are available at https://github.com/XiaodiYangCAU/TransPPI/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date