Author: Corsi, Alana; de Souza, Fabiane Florencio; Pagani, Regina Negri; Kovaleski, João Luiz
Title: Big data analytics as a tool for fighting pandemics: a systematic review of literature Cord-id: fnh3rf9k Document date: 2020_10_29
ID: fnh3rf9k
Snippet: Infectious and contagious diseases represent a major challenge for health systems worldwide, either in private or public sectors. More recently, with the increase in cases related to these problems, combined with the recent global pandemic of COVID-19, the need to study strategies to treat these health disturbs is even more latent. Big Data, as well as Big Data Analytics techniques, have been addressed in this context with the possibility of predicting, mapping, tracking, monitoring, and raising
Document: Infectious and contagious diseases represent a major challenge for health systems worldwide, either in private or public sectors. More recently, with the increase in cases related to these problems, combined with the recent global pandemic of COVID-19, the need to study strategies to treat these health disturbs is even more latent. Big Data, as well as Big Data Analytics techniques, have been addressed in this context with the possibility of predicting, mapping, tracking, monitoring, and raising awareness about these epidemics and pandemics. Thus, the purpose of this study is to identify how BDA can help in cases of pandemics and epidemics. To achieve this purpose, a systematic review of literature was carried out using the methodology Methodi Ordinatio. The rigorous search resulted in a portfolio of 45 articles, retrived from scientific databases. For the collection and analysis of data, the softwares NVivo 12 and VOSviewer were used. The content analysis sought to identify how Big Data and Big Data Analytics can help fighting epidemics and pandemics. The types and sources of data used in cases of previous epidemics and pandemics were identified, as well as techniques for treating these data. The results showed that the main sources of data come from social media and Internet search engines. The most common techniques for analyzing these data involve the use of statistics, such as correlation and regression, combined with other techniques. Results shows that there is a fruitiful field of study to be explored by both areas, Big Data and Health.
Search related documents:
Co phrase search for related documents- absolute lasso selection shrinkage operator and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
- absolute lasso selection shrinkage operator and machine learning technique: 1, 2, 3
- absolute mean percentage error and acute respiratory syndrome: 1, 2, 3
- absolute mean percentage error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- absolute mean percentage error and machine learning technique: 1
- academic social and additional challenge: 1
- academic social and machine learning: 1, 2
Co phrase search for related documents, hyperlinks ordered by date