Selected article for: "acute respiratory syndrome coronavirus and lstm model"

Author: Pillai, P. K.; Durairaj, D.; Samivel, K.
Title: Deep learning-based forecasting of COVID-19 in India
  • Cord-id: hu9dixaa
  • Document date: 2022_1_1
  • ID: hu9dixaa
    Snippet: During the past two decades, the world has confronted many pandemic disease outbreaks. Ebola, severe acute respiratory syndrome, Middle East respiratory syndrome, and, recently, coronavirus disease (COVID-19) have had a massive global impact in terms of stress on local and global human health, economic destruction, and, above all, damage to usual human life. Analyzing past similar infections will help in drawing inferences such as maintaining social distancing, herd immunity, and vaccinating mas
    Document: During the past two decades, the world has confronted many pandemic disease outbreaks. Ebola, severe acute respiratory syndrome, Middle East respiratory syndrome, and, recently, coronavirus disease (COVID-19) have had a massive global impact in terms of stress on local and global human health, economic destruction, and, above all, damage to usual human life. Analyzing past similar infections will help in drawing inferences such as maintaining social distancing, herd immunity, and vaccinating massively to go forward beyond this pandemic. The development of a forecasting model of COVID-19 infectious disease spreading rate plays a vital role in the future preparation of hospital facilities, such as setting up isolated wards, oxygen cylinders, and ventilators, etc., for future patients by the government. Also, the forecasting technique and model is in immediate need for us to understand and face the effect of this and future pandemics. The main objective of this work is to develop an intelligent model based on deep learning for forecasting or estimating COVID-19 future spreading rate in terms of confirmed, recovered, and deceased cases of 85 days in 4 states in India and India overall. Deep learning neural networks, a kind of machine learning technique, are a powerful tool to predict the future because of their nature of discovering complex nonlinear dependencies. A deep learning long short-term memory (LSTM) network, which is explicitly designed for learning long-term dependencies, is utilized in thiswork. Hence, one can predict 1 day ahead to any number of (up to 400) days ahead by using this model. To evaluate the performance of the deep learning forecasting model and to endorse its forecasting accuracy, the criteria of mean absolute error, mean square error, root mean square error, mean absolute percentage error, and Ro are used. The results of the proposed deep learning-based LSTM model are validated by statistical analysis and graphical analysis. Moreover, the proposed model exhibited superior forecasting accuracy. © 2021 BMJ Publishing Group. All rights reserved.

    Search related documents:
    Co phrase search for related documents
    • absolute error and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
    • absolute error and lstm model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
    • absolute error and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
    • absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • absolute error and machine learning technique: 1
    • absolute percentage error and acute respiratory syndrome: 1, 2, 3
    • absolute percentage error and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • absolute percentage error and lstm model: 1, 2, 3, 4, 5, 6, 7, 8
    • absolute percentage error and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • absolute percentage error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
    • absolute percentage error mean and acute respiratory syndrome: 1, 2
    • absolute percentage error mean and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • absolute percentage error mean and lstm model: 1, 2, 3, 4, 5, 6, 7, 8
    • absolute percentage error mean and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • absolute percentage error mean and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
    • acute respiratory syndrome and lstm model: 1, 2, 3, 4, 5
    • acute respiratory syndrome and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8
    • acute respiratory syndrome and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and machine learning technique: 1, 2