Author: Doornik, Jurgen A.; Castle, Jennifer L.; Hendry, David F.
Title: Modeling and forecasting the COVIDâ€19 pandemic timeâ€series data Cord-id: hye8dqlj Document date: 2021_8_7
ID: hye8dqlj
Snippet: OBJECTIVE: We analyze the number of recorded cases and deaths of COVIDâ€19 in many parts of the world, with the aim to understand the complexities of the data, and produce regular forecasts. METHODS: The SARSâ€CoVâ€2 virus that causes COVIDâ€19 has affected societies in all corners of the globe but with vastly differing experiences across countries. Healthâ€care and economic systems vary significantly across countries, as do policy responses, including testing, intermittent lockdowns, quara
Document: OBJECTIVE: We analyze the number of recorded cases and deaths of COVIDâ€19 in many parts of the world, with the aim to understand the complexities of the data, and produce regular forecasts. METHODS: The SARSâ€CoVâ€2 virus that causes COVIDâ€19 has affected societies in all corners of the globe but with vastly differing experiences across countries. Healthâ€care and economic systems vary significantly across countries, as do policy responses, including testing, intermittent lockdowns, quarantine, contact tracing, mask wearing, and social distancing. Despite these challenges, the reported data can be used in many ways to help inform policy. We describe how to decompose the reported time series of confirmed cases and deaths into a trend, seasonal, and irregular component using machine learning methods. RESULTS: This decomposition enables statistical computation of measures of the mortality ratio and reproduction number for any country, and we conduct a counterfactual exercise assuming that the United States had a summer outcome in 2020 similar to that of the European Union. The decomposition is also used to produce forecasts of cases and deaths, and we undertake a forecast comparison which highlights the importance of seasonality in the data and the difficulties of forecasting too far into the future. CONCLUSION: Our adaptive dataâ€based methods and purely statistical forecasts provide a useful complement to the output from epidemiological models.
Search related documents:
Co phrase search for related documents- absolute error and accuracy measure: 1, 2, 3, 4, 5, 6
- absolute error and accurate forecast: 1, 2, 3, 4, 5
- absolute error and accurately forecast: 1, 2, 3
- absolute error and actual forecast: 1
- absolute percentage error and accuracy forecast: 1, 2, 3
- absolute percentage error and accuracy measure: 1, 2, 3, 4
- absolute percentage error and accurate forecast: 1, 2, 3
- absolute percentage error and accurately forecast: 1, 2, 3
- absolute value and accurately forecast: 1
- accuracy forecast and actual forecast: 1, 2, 3, 4
Co phrase search for related documents, hyperlinks ordered by date