Author: Eren, Maksim E.; Solovyev, Nick; Hamer, Chris; McDonald, Renee; Alexandrov, Boian S.; Nicholas, Charles
Title: COVID-19 Multidimensional Kaggle Literature Organization Cord-id: v2dzq105 Document date: 2021_7_17
ID: v2dzq105
Snippet: The unprecedented outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), or COVID-19, continues to be a significant worldwide problem. As a result, a surge of new COVID-19 related research has followed suit. The growing number of publications requires document organization methods to identify relevant information. In this paper, we expand upon our previous work with clustering the CORD-19 dataset by applying multi-dimensional analysis methods. Tensor factorization is a powerfu
Document: The unprecedented outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), or COVID-19, continues to be a significant worldwide problem. As a result, a surge of new COVID-19 related research has followed suit. The growing number of publications requires document organization methods to identify relevant information. In this paper, we expand upon our previous work with clustering the CORD-19 dataset by applying multi-dimensional analysis methods. Tensor factorization is a powerful unsupervised learning method capable of discovering hidden patterns in a document corpus. We show that a higher-order representation of the corpus allows for the simultaneous grouping of similar articles, relevant journals, authors with similar research interests, and topic keywords. These groupings are identified within and among the latent components extracted via tensor decomposition. We further demonstrate the application of this method with a publicly available interactive visualization of the dataset.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date