Author: Watson, Linda; Qi, Siwei; DeIure, Andrea; Link, Claire; Chmielewski, Lindsi; Hildebrand, April; Rawson, Krista; Ruether, Dean
                    Title: Using Autoregressive Integrated Moving Average (ARIMA) Modelling to Forecast Symptom Complexity in an Ambulatory Oncology Clinic: Harnessing Predictive Analytics and Patient-Reported Outcomes  Cord-id: rhzha3u4  Document date: 2021_8_7
                    ID: rhzha3u4
                    
                    Snippet: An increasing incidence of cancer has led to high patient volumes and time challenges in ambulatory oncology clinics. By knowing how many patients are experiencing complex care needs in advance, clinic scheduling and staff allocation adjustments could be made to provide patients with longer or shorter timeslots to address symptom complexity. In this study, we used predictive analytics to forecast the percentage of patients with high symptom complexity in one clinic population in a given time per
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: An increasing incidence of cancer has led to high patient volumes and time challenges in ambulatory oncology clinics. By knowing how many patients are experiencing complex care needs in advance, clinic scheduling and staff allocation adjustments could be made to provide patients with longer or shorter timeslots to address symptom complexity. In this study, we used predictive analytics to forecast the percentage of patients with high symptom complexity in one clinic population in a given time period. Autoregressive integrated moving average (ARIMA) modelling was utilized with patient-reported outcome (PRO) data and patient demographic information collected over 24 weeks. Eight additional weeks of symptom complexity data were collected and compared to assess the accuracy of the forecasting model. The predicted symptom complexity levels were compared with observation data and a mean absolute predicting error of 5.9% was determined, indicating the model’s satisfactory accuracy for forecasting symptom complexity levels among patients in this clinic population. By using a larger sample and additional predictors, this model could be applied to other clinics to allow for tailored scheduling and staff allocation based on symptom complexity forecasting and inform system level models of care to improve outcomes and provide higher quality patient care.
 
  Search related documents: 
                                Co phrase  search for related documents- absolute error and ljung box statistic: 1
- absolute error and long period: 1
- absolute error and mae absolute error: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- absolute predict error and mae absolute error: 1
- absolute prediction error and mae absolute error: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
 
                                Co phrase  search for related documents, hyperlinks ordered by date