Author: Broughton, James P.; Deng, Xianding; Yu, Guixia; Fasching, Clare L.; Singh, Jasmeet; Streithorst, Jessica; Granados, Andrea; Sotomayor-Gonzalez, Alicia; Zorn, Kelsey; Gopez, Allan; Hsu, Elaine; Gu, Wei; Miller, Steve; Pan, Chao-Yang; Guevara, Hugo; Wadford, Debra A.; Chen, Janice S.; Chiu, Charles Y.
Title: Rapid Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a CRISPR-based DETECTR Lateral Flow Assay Cord-id: wuvry51z Document date: 2020_3_27
ID: wuvry51z
Snippet: An outbreak of novel betacoronavirus, SARS-CoV-2 (formerly named 2019-nCoV), began in Wuhan, China in December 2019 and the COVID-19 disease associated with infection has since spread rapidly to multiple countries. Here we report the development of SARS-CoV-2 DETECTR, a rapid (~30 min), low-cost, and accurate CRISPR-Cas12 based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts. We validated this method using contrived reference samples and clinical samples from in
Document: An outbreak of novel betacoronavirus, SARS-CoV-2 (formerly named 2019-nCoV), began in Wuhan, China in December 2019 and the COVID-19 disease associated with infection has since spread rapidly to multiple countries. Here we report the development of SARS-CoV-2 DETECTR, a rapid (~30 min), low-cost, and accurate CRISPR-Cas12 based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts. We validated this method using contrived reference samples and clinical samples from infected US patients and demonstrated comparable performance to the US CDC SARS-CoV-2 real-time RT-PCR assay.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date