Selected article for: "field cycling and spectral density"

Author: Clarkson, Michael W.; Lei, Ming; Eisenmesser, Elan Z.; Labeikovsky, Wladimir; Redfield, Alfred; Kern, Dorothee
Title: Mesodynamics in the SARS nucleocapsid measured by NMR field cycling
  • Cord-id: zso72hho
  • Document date: 2009_7_30
  • ID: zso72hho
    Snippet: Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R (1) at low fields with the sensitivity an
    Document: Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R (1) at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire β-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions.

    Search related documents:
    Co phrase search for related documents
    • absence fringe field and lock degradation: 1
    • accuracy sensitivity and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acid interaction and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
    • acute respiratory syndrome and local order: 1, 2, 3, 4, 5, 6, 7, 8, 9
    • acute respiratory syndrome and loop region: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
    • additional loop and loop region: 1, 2, 3
    • adjacent loop and loop region: 1, 2, 3, 4
    • little ratio change and local order: 1