Selected article for: "Try single phrases listed below for"

Author: Huang, Di; Qiu, Jiamin; Kuang, Shihuan; Deng, Meng
Title: In Vitro Evaluation of Clinical Candidates of γ-Secretase Inhibitors: Effects on Notch Inhibition and Promoting Beige Adipogenesis and Mitochondrial Biogenesis.
  • Cord-id: g9y6cv9s
  • Document date: 2020_9_4
  • ID: g9y6cv9s
    Snippet: PURPOSE Inhibition of Notch signaling has been recently demonstrated to promote beige adipocyte biogenesis. However, most γ-secretase inhibitors (GSIs) used to achieve pharmacological inhibition of Notch signaling are at the basic research or preclinical stage, limiting the translation of fundamental findings into clinical practice. This present study aimed to evaluate the potential of several clinical candidates of GSIs as browning agents for the treatment of obesity. METHODS Seven GSIs that a
    Document: PURPOSE Inhibition of Notch signaling has been recently demonstrated to promote beige adipocyte biogenesis. However, most γ-secretase inhibitors (GSIs) used to achieve pharmacological inhibition of Notch signaling are at the basic research or preclinical stage, limiting the translation of fundamental findings into clinical practice. This present study aimed to evaluate the potential of several clinical candidates of GSIs as browning agents for the treatment of obesity. METHODS Seven GSIs that are clinical candidates for the treatment of Alzheimer's disease or cancer were selected and their impacts on Notch inhibition as well as promoting beige biogenesis were compared using in vitro culture of 3T3-L1 preadipocytes. RESULTS Four compounds (i.e.RO4929097, PF-03084014, LY3039478, and BMS-906024) that efficiently inhibited the expression of Notch target genes in 3T3-L1 preadipocytes were identified. Moreover, these compounds were optimized for dose-dependent effects at three gradient concentrations (0.5, 1, and 10 μM) to promote beige adipogenesis and mitochondrial biogenesis in 3T3-L1 preadipocytes without causing severe cytotoxicity. CONCLUSIONS Our findings not only highlight the potential of cross-therapeutic application of these GSIs for obesity treatment via inhibition of γ-secretase-mediated processing of Notch signaling, but also provide important experimental evidence to support further design and development of clinically translatable Notch-inhibiting drug delivery systems.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date