Author: Ray, S.; Swift, A.; Fanstone, J. W.; Banerjee, A.; Mamalakis, M.; Vorselaars, B.; Mackenzie, L. S.; Weeks, S.
Title: LUCAS: A highly accurate yet simple risk calculator that predicts survival of COVID-19 patients using rapid routine tests Cord-id: ibjgpzrs Document date: 2021_4_30
ID: ibjgpzrs
Snippet: There is an urgent need to develop a simplified risk tool that enables rapid triaging of SARS CoV-2 positive patients during hospital admission, which complements current practice. Many predictive tools developed to date are complex, rely on multiple blood results and past medical history, do not include chest X ray results and rely on Artificial Intelligence rather than simplified algorithms. Our aim was to develop a simplified risk-tool based on five parameters and CXR image data that predicts
Document: There is an urgent need to develop a simplified risk tool that enables rapid triaging of SARS CoV-2 positive patients during hospital admission, which complements current practice. Many predictive tools developed to date are complex, rely on multiple blood results and past medical history, do not include chest X ray results and rely on Artificial Intelligence rather than simplified algorithms. Our aim was to develop a simplified risk-tool based on five parameters and CXR image data that predicts the 60-day survival of adult SARS CoV-2 positive patients at hospital admission. Methods We analysed the NCCID database of patient blood variables and CXR images from 19 hospitals across the UK contributed clinical data on SARS CoV-2 positive patients using multivariable logistic regression. The initial dataset was non-randomly split between development and internal validation dataset with 1434 and 310 SARS CoV-2 positive patients, respectively. External validation of final model conducted on 741 Accident and Emergency admissions with suspected SARS CoV-2 infection from a separate NHS Trust which was not part of the initial NCCID data set. Findings The LUCAS mortality score included five strongest predictors (lymphocyte count, urea, CRP, age, sex), which are available at any point of care with rapid turnaround of results. Our simple multivariable logistic model showed high discrimination for fatal outcome with the AUC-ROC in development cohort 0.765 (95% confidence interval (CI): 0.738 - 0.790), in internal validation cohort 0.744 (CI: 0.673 - 0.808), and in external validation cohort 0.752 (CI: 0.713 - 0.787). The discriminatory power of LUCAS mortality score was increased slightly when including the CXR image data (for normal versus abnormal): internal validation AUC-ROC 0.770 (CI: 0.695 - 0.836) and external validation AUC-ROC 0.791 (CI: 0.746 - 0.833). The discriminatory power of LUCAS and LUCAS + CXR performed in the upper quartile of pre-existing risk stratification scores with the added advantage of using only 5 predictors. Interpretation This simplified prognostic tool derived from objective parameters can be used to obtain valid predictions of mortality in patients within 60 days SARS CoV-2 RT-PCR results. This free-to-use simplified tool can be used to assist the triage of patients into low, moderate, high or very high risk of fatality and is available at https://mdscore.net/.
Search related documents:
Co phrase search for related documents- abnormal vs and admission time: 1, 2
- absolute lasso selection shrinkage operator and admission time: 1, 2
- acute care and admission time: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute care and admit patient: 1
- acute care need and admission time: 1, 2
- admission time and logistic model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date