Selected article for: "cell molecule and growth factor"

Author: Ogawa, K; Miyaji, H; Kato, A; Kosen, Y; Momose, T; Yoshida, T; Nishida, E; Miyata, S; Murakami, S; Takita, H; Fugetsu, B; Sugaya, T; Kawanami, M
Title: Periodontal tissue engineering by nano beta-tricalcium phosphate scaffold and fibroblast growth factor-2 in one-wall infrabony defects of dogs.
  • Cord-id: d3rmed3f
  • Document date: 2016_1_1
  • ID: d3rmed3f
    Snippet: BACKGROUND AND OBJECTIVE Nanoparticle bioceramics are being investigated for biomedical applications. We fabricated a regenerative scaffold comprising type I collagen and beta-tricalcium phosphate (β-TCP) nanoparticles. Fibroblast growth factor-2 (FGF-2) is a bioeffective signaling molecule that stimulates cell proliferation and wound healing. This study examined the effects, on bioactivity, of a nano-β-TCP/collagen scaffold loaded with FGF-2, particularly on periodontal tissue wound healing.
    Document: BACKGROUND AND OBJECTIVE Nanoparticle bioceramics are being investigated for biomedical applications. We fabricated a regenerative scaffold comprising type I collagen and beta-tricalcium phosphate (β-TCP) nanoparticles. Fibroblast growth factor-2 (FGF-2) is a bioeffective signaling molecule that stimulates cell proliferation and wound healing. This study examined the effects, on bioactivity, of a nano-β-TCP/collagen scaffold loaded with FGF-2, particularly on periodontal tissue wound healing. MATERIAL AND METHODS Beta-tricalcium phosphate was pulverized into nanosize particles (84 nm) and was then dispersed. A nano-β-TCP scaffold was prepared by coating the surface of a collagen scaffold with a nanosize β-TCP dispersion. Scaffolds were characterized using scanning electron microscopy, compressive testing, cell seeding and rat subcutaneous implant testing. Then, nano-β-TCP scaffold, nano-β-TCP scaffold loaded with FGF-2 and noncoated collagen scaffold were implanted into a dog one-wall infrabony defect model. Histological observations were made at 10 d and 4 wk postsurgery. RESULTS Scanning electron microscopy images show that TCP nanoparticles were attached to collagen fibers. The nano-β-TCP scaffold showed higher compressive strength and cytocompatibility compared with the noncoated collagen scaffold. Rat subcutaneous implant tests showed that the DNA contents of infiltrating cells in the nano-β-TCP scaffold and the FGF-2-loaded scaffold were approximately 2.8-fold and 3.7-fold greater, respectively, than in the collagen scaffold. Histological samples from the periodontal defect model showed about five-fold greater periodontal tissue repair following implantation of the nano-β-TCP scaffold loaded with FGF-2 compared with the collagen scaffold. CONCLUSION The β-TCP nanoparticle coating strongly improved the collagen scaffold bioactivity. Nano-β-TCP scaffolds containing FGF-2 are anticipated for use in periodontal tissue engineering.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date