Author: Moghimi, Negin; Eslami Farsani, Bahram; Ghadipasha, Masoud; Mahmoudiasl, Gholam-Reza; Piryaei, Abbas; Aliaghaei, Abbas; Abdi, Shabnam; Abbaszadeh, Hojjat-Allah; Abdollahifar, Mohammad-Amin; Forozesh, Mehdi
Title: COVID-19 disrupts spermatogenesis through the oxidative stress pathway following induction of apoptosis Cord-id: d507aezw Document date: 2021_6_2
ID: d507aezw
Snippet: To evaluate the incidence of apoptosis within the testes of patients who died from severe acute respiratory syndrome coronavirus 2 (COVID-19) complications, testis tissue was collected from autopsies of COVID-19 positive (n = 6) and negative men (n = 6). They were then taken for histopathological experiments, and RNA extraction, to examine the expression of angiotensin-converting enzyme 2 (ACE2), transmembrane protease, serine 2 (TMPRSS2), BAX, BCL2 and Caspase3 genes. Reactive oxygen species (R
Document: To evaluate the incidence of apoptosis within the testes of patients who died from severe acute respiratory syndrome coronavirus 2 (COVID-19) complications, testis tissue was collected from autopsies of COVID-19 positive (n = 6) and negative men (n = 6). They were then taken for histopathological experiments, and RNA extraction, to examine the expression of angiotensin-converting enzyme 2 (ACE2), transmembrane protease, serine 2 (TMPRSS2), BAX, BCL2 and Caspase3 genes. Reactive oxygen species (ROS) production and glutathione disulfide (GSH) activity were also thoroughly examined. Autopsied testicular specimens of COVID-19 showed that COVID-19 infection significantly decreased the seminiferous tubule length, interstitial tissue and seminiferous tubule volume, as well as the number of testicular cells. An analysis of the results showed that the Johnsen expressed a reduction in the COVID-19 group when compared to the control group. Our data showed that the expression of ACE2, BAX and Caspase3 were remarkably increased as well as a decrease in the expression of BCL2 in COVID-19 cases. Although, no significant difference was found for TMPRSS2. Furthermore, the results signified an increase in the formation of ROS and suppression of the GSH activity as oxidative stress biomarkers. The results of immunohistochemistry and TUNEL assay showed that the expression of ACE2 and the number of apoptotic cells significantly increased in the COVID-19 group. Overall, this study suggests that COVID-19 infection causes spermatogenesis disruption, probably through the oxidative stress pathway and subsequently induces apoptosis.
Search related documents:
Co phrase search for related documents- lung parenchyma and lymph node: 1, 2, 3, 4, 5, 6, 7
- lung peripheral distribution and lymph node: 1
- lung tissue and lymph node: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Co phrase search for related documents, hyperlinks ordered by date