Selected article for: "degree distribution and power law distribution"

Author: Baek, Yongjoo; Chung, Kihong; Ha, Meesoon; Jeong, Hawoong; Kim, Daniel
Title: Role of hubs in the synergistic spread of behavior
  • Cord-id: fx9ibkuf
  • Document date: 2019_2_25
  • ID: fx9ibkuf
    Snippet: The spread of behavior in a society has two major features: the synergy of multiple spreaders and the dominance of hubs. While strong synergy is known to induce mixed-order transitions (MOTs) at percolation, the effects of hubs on the phenomena are yet to be clarified. By analytically solving the generalized epidemic process on random scale-free networks with the power-law degree distribution [Formula: see text] , we clarify how the dominance of hubs in social networks affects the conditions for
    Document: The spread of behavior in a society has two major features: the synergy of multiple spreaders and the dominance of hubs. While strong synergy is known to induce mixed-order transitions (MOTs) at percolation, the effects of hubs on the phenomena are yet to be clarified. By analytically solving the generalized epidemic process on random scale-free networks with the power-law degree distribution [Formula: see text] , we clarify how the dominance of hubs in social networks affects the conditions for MOTs. Our results show that, for [Formula: see text] , an abundance of hubs drive MOTs, even if a synergistic spreading event requires an arbitrarily large number of adjacent spreaders. In particular, for [Formula: see text] , we find that a global cascade is possible even when only synergistic spreading events are allowed. These transition properties are substantially different from those of cooperative contagions, which are another class of synergistic cascading processes exhibiting MOTs.

    Search related documents: