Selected article for: "electrophoretic mobility and EMSA assay shift"

Author: Yan, Xiaohong; Hao, Qian; Mu, Yongxin; Timani, Khalid Amine; Ye, Linbai; Zhu, Ying; Wu, Jianguo
Title: Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein
  • Cord-id: w4qpyfp7
  • Document date: 2006_3_3
  • ID: w4qpyfp7
    Snippet: SARS-associated coronavirus (SARS-CoV) causes inflammation and damage to the lungs resulting in severe acute respiratory syndrome. To evaluate the molecular mechanisms behind this event, we investigated the roles of SARS-CoV proteins in regulation of the proinflammatory factor, cyclooxygenase-2 (COX-2). Individual viral proteins were tested for their abilities to regulate COX-2 gene expression. Results showed that the COX-2 promoter was activated by the nucleocapsid (N) protein in a concentratio
    Document: SARS-associated coronavirus (SARS-CoV) causes inflammation and damage to the lungs resulting in severe acute respiratory syndrome. To evaluate the molecular mechanisms behind this event, we investigated the roles of SARS-CoV proteins in regulation of the proinflammatory factor, cyclooxygenase-2 (COX-2). Individual viral proteins were tested for their abilities to regulate COX-2 gene expression. Results showed that the COX-2 promoter was activated by the nucleocapsid (N) protein in a concentration-dependent manner. Western blot analysis indicated that N protein was sufficient to stimulate the production of COX-2 protein in mammalian cells. COX-2 promoter mutations suggested that activation of COX-2 transcription depended on two regulatory elements, a nuclear factor-kappa B (NF-κB) binding site, and a CCAAT/enhancer binding protein (C/EBP) binding site. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) demonstrated that SARS-CoV N protein bound directly to these regulatory sequences. Protein mutation analysis revealed that a Lys-rich motif of N protein acted as a nuclear localization signal and was essential for the activation of COX-2. In addition, a Leu-rich motif was found to be required for the N protein function. A sequence of 68 residuals was identified as a potential DNA-binding domain essential for activating COX-2 expression. We propose that SARS-CoV N protein causes inflammation of the lungs by activating COX-2 gene expression by binding directly to the promoter resulting in inflammation through multiple COX-2 signaling cascades.

    Search related documents:
    Co phrase search for related documents
    • acute respiratory syndrome and luciferase activity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
    • acute respiratory syndrome and luciferase activity assay: 1, 2, 3, 4
    • acute respiratory syndrome and luciferase activity assays: 1
    • acute respiratory syndrome and luciferase assay: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
    • acute respiratory syndrome and luciferase assay evaluate: 1, 2
    • acute respiratory syndrome and luciferase expression: 1, 2, 3, 4, 5, 6, 7, 8, 9
    • acute respiratory syndrome and luciferase gene: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
    • acute respiratory syndrome and luciferase reporter: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
    • acute respiratory syndrome and luciferase reporter gene: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
    • acute respiratory syndrome and luciferase reporter vector: 1, 2
    • acute respiratory syndrome and lung inflammation: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
    • acute respiratory syndrome and lung inflammation viral infection: 1, 2, 3, 4, 5, 6, 7
    • acute respiratory syndrome and lysine rich: 1
    • acute respiratory syndrome and lysine rich region: 1
    • acute respiratory syndrome and lysine rich sequence: 1
    • acute respiratory syndrome and lysis buffer: 1, 2, 3
    • adjacent sequence and luciferase activity: 1
    • luciferase activity and lysis buffer: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
    • luciferase activity assay and lysis buffer: 1, 2, 3