Selected article for: "activity time and machine learning"

Author: Andreo, Verónica; Porcasi, Ximena; Guzman, Claudio; Lopez, Laura; Scavuzzo, Carlos M.
Title: Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence
  • Cord-id: d6azk9z1
  • Document date: 2021_10_9
  • ID: d6azk9z1
    Snippet: SIMPLE SUMMARY: Aedes aegypti, the mosquito species that transmits dengue virus among others, is fully adapted to thrive in urban areas. Their activity, however, varies in time and space and this might imply different transmission risk. We hypothesize that the temporal differences in mosquito activity are determined by local environmental conditions. Hence, we explore the existence of groups of temporal patterns in weekly time series of ovitraps records and we associate those patterns to environ
    Document: SIMPLE SUMMARY: Aedes aegypti, the mosquito species that transmits dengue virus among others, is fully adapted to thrive in urban areas. Their activity, however, varies in time and space and this might imply different transmission risk. We hypothesize that the temporal differences in mosquito activity are determined by local environmental conditions. Hence, we explore the existence of groups of temporal patterns in weekly time series of ovitraps records and we associate those patterns to environmental variables derived from remote sensing data and also to dengue incidence. We found three groups of temporal patterns that showed association with land cover diversity, heterogeneity and variability in vegetation and humidity indices estimated over 50-m radius buffer areas surrounding ovitraps. Dengue incidence on a neighborhood basis showed a weak but positive association with the percentage of pixels belonging to one of the patterns detected. The understanding of the spatial distribution of temporal patterns and their environmental determinants might then become relevant to guide the allocation of prevention and monitoring interventions. ABSTRACT: Aedes aegypti, the mosquito species transmitting dengue, zika, chikungunya and yellow fever viruses, is fully adapted to thrive in urban areas. The temporal activity of this mosquito, however, varies within urban areas which might imply different transmission risk. In this work, we hypothesize that temporal differences in mosquito activity patterns are determined by local environmental conditions. Hence, we explore the existence of groups of temporal patterns in weekly time series of Ae. aegypti ovitraps records (2017–2019) by means of time series clustering. Next, with the aim of predicting risk in places with no mosquito field data, we use machine learning classification tools to assess the association of temporal patterns with environmental variables derived from satellite imagery and predict temporal patterns over the city area to finally test the relationship with dengue incidence. We found three groups of temporal patterns that showed association with land cover diversity, variability in vegetation and humidity and, heterogeneity measured by texture indices estimated over buffer areas surrounding ovitraps. Dengue incidence on a neighborhood basis showed a weak but positive association with the percentage of pixels belonging to only one of the temporal patterns detected. The understanding of the spatial distribution of temporal patterns and their environmental determinants might then become highly relevant to guide the allocation of prevention and potential interventions. Further investigation is still needed though to incorporate other determinants not considered here.

    Search related documents:
    Co phrase search for related documents
    • activity group and low activity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
    • activity group and low activity group: 1, 2, 3, 4, 5, 6
    • activity group and low proportion: 1
    • activity pattern and long period: 1
    • activity pattern and low activity: 1, 2
    • long period and low activity: 1
    • long period and low proportion: 1