Author: Alavi, Parnian; Rathod, Abhisha M.; Jahroudi, Nadia
Title: Age-Associated Increase in Thrombogenicity and Its Correlation with von Willebrand Factor Cord-id: d7qp1mk0 Document date: 2021_9_16
ID: d7qp1mk0
Snippet: Endothelial cells that cover the lumen of all blood vessels have the inherent capacity to express both pro and anticoagulant molecules. However, under normal physiological condition, they generally function to maintain a non-thrombogenic surface for unobstructed blood flow. In response to injury, certain stimuli, or as a result of dysfunction, endothelial cells release a highly adhesive procoagulant protein, von Willebrand factor (VWF), which plays a central role in formation of platelet aggrega
Document: Endothelial cells that cover the lumen of all blood vessels have the inherent capacity to express both pro and anticoagulant molecules. However, under normal physiological condition, they generally function to maintain a non-thrombogenic surface for unobstructed blood flow. In response to injury, certain stimuli, or as a result of dysfunction, endothelial cells release a highly adhesive procoagulant protein, von Willebrand factor (VWF), which plays a central role in formation of platelet aggregates and thrombus generation. Since VWF expression is highly restricted to endothelial cells, regulation of its levels is among the most important functions of endothelial cells for maintaining hemostasis. However, with aging, there is a significant increase in VWF levels, which is concomitant with a significant rise in thrombotic events. It is not yet clear why and how aging results in increased VWF levels. In this review, we have aimed to discuss the age-related increase in VWF, its potential mechanisms, and associated coagulopathies as probable consequences.
Search related documents:
Co phrase search for related documents- acute ards respiratory distress syndrome and low normal: 1, 2, 3, 4, 5, 6, 7
- acute ards respiratory distress syndrome and lung endothelial: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
- acute ards respiratory distress syndrome and lung endothelial cell: 1, 2, 3, 4, 5
- acute ards respiratory distress syndrome and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
- acute ards respiratory distress syndrome and lung microvascular: 1, 2, 3
- acute ards respiratory distress syndrome and lung microvasculature: 1, 2
- acute ards respiratory distress syndrome and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute ards respiratory distress syndrome and mac membrane attack complex: 1
- acute myocardial infarction and low normal: 1
- acute myocardial infarction and low platelet count: 1
- acute myocardial infarction and lung injury: 1, 2, 3
- acute myocardial infarction and lung tissue: 1, 2
- acute phase and low grade inflammation: 1, 2
- acute phase and low normal: 1, 2, 3
- acute phase and low platelet count: 1
- acute phase and lung endothelial: 1, 2
- acute phase and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38
- acute phase and lung microvascular: 1
- acute phase and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
Co phrase search for related documents, hyperlinks ordered by date