Selected article for: "address study and machine learning"

Author: Zhu, H. R.; Lei, L.
Title: A dependency-based machine learning approach to the identification of research topics: a case in COVID-19 studies
  • Cord-id: zr7vovgd
  • Document date: 2021_1_1
  • ID: zr7vovgd
    Snippet: Purpose Previous research concerning automatic extraction of research topics mostly used rule-based or topic modeling methods, which were challenged due to the limited rules, the interpretability issue and the heavy dependence on human judgment. This study aims to address these issues with the proposal of a new method that integrates machine learning models with linguistic features for the identification of research topics. Design/methodology/approach First, dependency relations were used to ext
    Document: Purpose Previous research concerning automatic extraction of research topics mostly used rule-based or topic modeling methods, which were challenged due to the limited rules, the interpretability issue and the heavy dependence on human judgment. This study aims to address these issues with the proposal of a new method that integrates machine learning models with linguistic features for the identification of research topics. Design/methodology/approach First, dependency relations were used to extract noun phrases from research article texts. Second, the extracted noun phrases were classified into topics and non-topics via machine learning models and linguistic and bibliometric features. Lastly, a trend analysis was performed to identify hot research topics, i.e. topics with increasing popularity. Findings The new method was experimented on a large dataset of COVID-19 research articles and achieved satisfactory results in terms of f-measures, accuracy and AUC values. Hot topics of COVID-19 research were also detected based on the classification results. Originality/value This study demonstrates that information retrieval methods can help researchers gain a better understanding of the latest trends in both COVID-19 and other research areas. The findings are significant to both researchers and policymakers.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date