Selected article for: "continuous model and discrete model"

Author: Zhao, Jing; Basole, Samanvitha; Stamp, Mark
Title: Malware Classification with GMM-HMM Models
  • Cord-id: wtxyp318
  • Document date: 2021_3_3
  • ID: wtxyp318
    Snippet: Discrete hidden Markov models (HMM) are often applied to malware detection and classification problems. However, the continuous analog of discrete HMMs, that is, Gaussian mixture model-HMMs (GMM-HMM), are rarely considered in the field of cybersecurity. In this paper, we use GMM-HMMs for malware classification and we compare our results to those obtained using discrete HMMs. As features, we consider opcode sequences and entropy-based sequences. For our opcode features, GMM-HMMs produce results t
    Document: Discrete hidden Markov models (HMM) are often applied to malware detection and classification problems. However, the continuous analog of discrete HMMs, that is, Gaussian mixture model-HMMs (GMM-HMM), are rarely considered in the field of cybersecurity. In this paper, we use GMM-HMMs for malware classification and we compare our results to those obtained using discrete HMMs. As features, we consider opcode sequences and entropy-based sequences. For our opcode features, GMM-HMMs produce results that are comparable to those obtained using discrete HMMs, whereas for our entropy-based features, GMM-HMMs generally improve significantly on the classification results that we have achieved with discrete HMMs.

    Search related documents:
    Co phrase search for related documents