Author: shtossel, o.; louzoun, y.
Title: Sampling bias minimization in disease frequency estimates Cord-id: wqzgiapq Document date: 2021_5_8
ID: wqzgiapq
Snippet: An accurate estimate of the number of infected individuals in any disease is crucial. Current estimates are mainly based on the fraction of positive samples or the total number of positive samples. However, both methods are biased and sensitive to the sampling depth. We here propose an alternative method to use the attributes of each sample to estimate the change in the total number of positive patients in the total population. We present a Bayesian estimator assuming a combination of condition
Document: An accurate estimate of the number of infected individuals in any disease is crucial. Current estimates are mainly based on the fraction of positive samples or the total number of positive samples. However, both methods are biased and sensitive to the sampling depth. We here propose an alternative method to use the attributes of each sample to estimate the change in the total number of positive patients in the total population. We present a Bayesian estimator assuming a combination of condition and time-dependent probability of being positive, and mixed implicit-explicit solution for the probability of a person with conditions i at time t of being positive. We use this estimate to predict the total probability of being positive at a given day t. We show that these estimate results are smooth and not sensitive to the properties of the samples. Moreover, these results are a better predictor of future mortality.
Search related documents:
Co phrase search for related documents- log likelihood and long short: 1
- log likelihood and long short term: 1
- log likelihood and machine learning: 1, 2
- long period and machine learning: 1, 2, 3, 4, 5, 6, 7
- long short and low correlation: 1
- long short and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long short term and low correlation: 1
- long short term and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long short term prediction and machine learning: 1, 2, 3, 4, 5
- low correlation and machine learning: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date