Selected article for: "active disease and acute sars respiratory syndrome"

Author: Gaeckle, Nathaniel T.; Lee, Jihyeon; Park, Yensil; Kreykes, Gean; Evans, Michael D.; Hogan, Christopher J.
Title: Aerosol Generation from the Respiratory Tract with Various Modes of Oxygen Delivery
  • Cord-id: yb4h1vo1
  • Document date: 2020_10_15
  • ID: yb4h1vo1
    Snippet: Rationale: Aerosol generation with modes of oxygen therapy such as high-flow nasal cannula and noninvasive positive-pressure ventilation is a concern for healthcare workers during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The amount of aerosol generation from the respiratory tract with these various oxygen modalities is unknown. Objectives: To measure the size and number concentration of particles and droplets generated from the respiratory tract of humans expose
    Document: Rationale: Aerosol generation with modes of oxygen therapy such as high-flow nasal cannula and noninvasive positive-pressure ventilation is a concern for healthcare workers during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The amount of aerosol generation from the respiratory tract with these various oxygen modalities is unknown. Objectives: To measure the size and number concentration of particles and droplets generated from the respiratory tract of humans exposed to various oxygen delivery modalities. Methods: Ten healthy participants with no active pulmonary disease were enrolled. Oxygen modalities tested included nonhumidified nasal cannula, face mask, heated and humidified high-flow nasal cannula, and noninvasive positive-pressure ventilation. Aerosol generation was measured with each oxygen mode while participants performed maneuvers of normal breathing, talking, deep breathing, and coughing. Testing was conducted in a negative-pressure room. Particles with a diameter between 0.37 and 20 μm were measured using an aerodynamic particle spectrometer. Measurements and Main Results: Median particle concentration ranged from 0.041 to 0.168 particles/cm(3). Median diameter ranged from 1.01 to 1.53 μm. Cough significantly increased the number of particles measured. Measured aerosol concentration did not significantly increase with the use of either humidified high-flow nasal cannula or noninvasive positive-pressure ventilation. This was the case during normal breathing, talking, deep breathing, and coughing. Conclusions: Oxygen delivery modalities of humidified high-flow nasal cannula and noninvasive positive-pressure ventilation do not increase aerosol generation from the respiratory tract in healthy human participants with no active pulmonary disease measured in a negative-pressure room.

    Search related documents:
    Co phrase search for related documents
    • active pulmonary disease and lung disease: 1
    • long duration and lung disease: 1
    • low concentration and lung compliance: 1
    • low concentration and lung disease: 1, 2, 3, 4